
Vertical navigation and trajectory tracking for UAV

Pedro Alexandre Pais Pereira

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Dr. Alberto Manuel Martinho Vale
Prof. Rodrigo Martins de Matos Ventura

Examination Committee

Chairperson: Prof. Paulo Jorge Coelho Ramalho Oliveira
Supervisor: Dr. Alberto Manuel Martinho Vale

Member of the Committee: Prof. Bruno João Nogueira Guerreiro

January 2021

ii

Acknowledgments

I would like to start by thanking my thesis supervisors, Doctor Alberto Manuel Martinho Vale and Pro-

fessor Rodrigo Martins de Matos Ventura for the support, knowledge and contributions that allowed me

to successfully develop and complete my dissertation. Without their help and recommendations this

work would have never been possible. I would also like to recognize the full team behind FRIENDS for

allowing me to participate and contribute in the completion of this project.

Moreover, I would also like to thank all my family and in particular my mother, father and sister for

standing beside me in the hard times and during this strange and rough year. Without their support I

could have never finished this work before the initial deadline.

Finally, I would like to thank all my friends that supported and encourage me throughout my University

years making them as enjoyable as they could ever be. Their support, suggestions and corrections were

also crucial for the completion of this dissertation and for this I will be forever grateful.

iii

iv

Resumo

O recente avanço tecnológico de sensores e unidades de processamento permitiu a integração em

diversas aplicações civis e militares de sistemas autônomos, como Veı́culos Aéreos Não Tripulados

(UAV), capazes de executar com eficiência missões de vigilância e monitorização em locais anterior-

mente considerados perigosos ou inacessı́veis.

Algumas dessas missões requerem a obtenção de dados de sensores em proximidade a objetos

de interesse localizados no solo. Nesta tese, é necessário determinar o caminho que permitirá ao

drone voar no local da missão em segurança evitando facilmente colisões com o terreno e mantendo

uma altitude baixa e aproximadamente constante acima do solo. Esta tese propõe um algoritmo de

geração de trajetória ótima baseado em métodos iterativos para gerar o caminho ideal para o UAV e

um controlador preditivo capaz de seguir esta trajetória com precisão. A solução proposta considera a

dinâmica não linear do modelo do sistema autônomo e determina uma trajetória discreta que satisfaz

as restrições de seguimento de terreno e de passagem em pontos predefinidos enquanto minimiza

uma função de custo que visa reduzir o tempo e a aceleração da missão. O otimizador de trajetória

desenvolvido efectua uma otimização offline tendo em conta a informação de altitude obtida em missiẽs

anteriores. O desempenho do planeador de trajetória é analisado e discutido para vários cenários com

diferentes perfis de elevação.

Para seguir com precisão a trajetória otimizada na presença de perturbações, este trabalho também

propõe a formulação, implementação e validação de um Controlo Preditivo baseado em modelos dinâmicos.

Esta estratégia de planeamento e controlo, à semelhança do problema de geração de trajetória, trata-se

de um problema de otimização que tem como objetivo minimizar uma função de custo quadrática que

penaliza erros de seguimento enquanto satisfaz as restrições dinâmicas impostas pelo modelo. Este

Controlador foi testado num ambiente de simulação (Gazebo), onde o modelo do drone do projeto Frota

de drones para inspeção radiológica, comunicação e salvamento 1 e um terreno realista permitiram

validar a estabilidade e robustez do controlador projetado, bem como a integração do mesmo com o

optimizador de trajetória.

Palavras-chave: UAV, Trajetória Ótima, Seguimento de Terreno, Passagem em Pontos Pre-

definidos, Controlo Preditivo baseado em Modelos Dinâmicos, Seguimento Preciso de Trajetória
1https://www.ipfn.tecnico.ulisboa.pt/FRIENDS/index.html

v

vi

Abstract

The recent technological achievements in sensors and embedded systems have prompted the integra-

tion in several civil and military applications of autonomous systems such as Unmanned Aerial Vehicles

(UAV) capable of efficiently executing surveying and monitoring missions in locations otherwise consid-

ered dangerous or inaccessible.

Some of those missions require the acquisition of sensor data close to objects and areas of interest

located on the ground. In this thesis, it is necessary to determine the path that will allow the UAV to

roam the mission site safely and dynamically by easily avoiding terrain obstacles and while maintaining

a constant and close proximity to the ground. This thesis proposes an optimal trajectory generation

algorithm based on gradient search methods to generate the flight path for the UAV and an optimization

controller capable of precisely track those trajectories. The proposed solution considers a non-linear

model dynamics approximation of the autonomous system and determines a discrete trajectory that

satisfies Terrain-following and waypoint tracking constraints and minimizes a cost function that aims to

reduce the mission’s time and acceleration. The trajectory optimizer performs an offline preliminary

optimization based on previously acquired data of the terrain elevation in the mission’s site. The path

planner’s performance is tested and discussed for several scenarios with different elevation profiles.

In order to precisely perform Trajectory tracking and path following of the determined optimum tra-

jectory in the presence of disturbances, this paper also presents the design, implementation and testing

of a Model Predictive Control (MPC). This online planning and control strategy is also an optimization

problem that aims to minimize a quadratic function designed to penalize state errors while satisfying

the imposed dynamic constraints. The MPC was tested in a physics simulation environment (Gazebo)

where a realistic terrain and a model of the Fleet of dRones for radIological inspEction, commuNication

anD reScue project 2 UAV was integrated to further validate the stability and robustness of the designed

controller.

Keywords: UAV, Optimal trajectory, Terrain-following, Waypoint tracking, Model Predictive Con-

trol, Trajectory tracking and path following
2https://www.ipfn.tecnico.ulisboa.pt/FRIENDS/index.html

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Tables . xiii

List of Figures . xv

Nomenclature . xix

Glossary . xxiii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 State of the Art . 4

1.3.1 Trajectory Generation . 4

1.3.2 UAV Control . 6

1.4 Thesis Contributions . 7

1.5 Thesis Outline . 7

2 Theoretical Overview 9

2.1 Optimization Overview . 9

2.2 Trajectory Optimization . 14

2.3 Model Predictive Controller . 20

2.3.1 Stability . 22

3 Hexarotor Dynamics and Kinematics 25

3.1 Reference systems for the hexacopter . 25

3.2 Applied forces and torques . 27

4 Trajectory Generation Formulation 31

4.1 System Dynamics . 31

4.2 Waypoint Objective . 33

4.3 Terrain Following and Terrain Avoidance Objective . 34

4.4 Time-Optimal Objective . 35

ix

4.5 Terrain Modelling . 37

4.6 Solver Implementation . 38

4.6.1 Problem Discretization . 38

4.6.2 Optimization Function . 39

4.6.3 Constraints . 40

4.6.4 Experimental Results with Validation Data . 41

5 Model Predictive Control Formulation 49

5.1 System Dynamics . 49

5.2 Cascaded Control Strategy . 51

5.3 Attitude System Identification . 52

5.4 External Disturbance Estimation . 53

5.5 Solver Implementation . 55

5.5.1 Optimization Function . 57

5.5.2 Constraints . 57

6 Simulation 59

6.1 Gazebo Model . 59

6.2 Height map Model . 61

6.3 Software Architecture . 62

6.3.1 PX4 Autopilot . 62

6.3.2 Implemented Control Architecture . 63

6.4 MPC Simulation Results . 64

6.4.1 Hovering Performance . 65

6.4.2 Step Reference . 66

6.4.3 Trajectory Tracking without Wind . 67

6.4.4 Trajectory Tracking with Wind . 69

6.5 Full Control Architecture Simulation . 71

7 Conclusions 73

7.1 Future Work . 74

Bibliography 75

A Polynomial Trajectory Planning 83

A.1 Problem Formulation . 83

A.2 Objective function . 84

A.3 Constraints . 84

A.4 Unconstrained QP Reformulation . 85

A.5 Time Optimization . 86

A.6 State Inequality Constraints . 86

x

A.7 Limitations and Results . 87

xi

xii

List of Tables

4.1 Waypoint discrete allocation . 33

4.2 Trajectory optimization parameters and coefficients. 41

4.3 Time steps of the optimum trajectory on Scenario 1. 42

4.4 Time steps of the optimum trajectory on Scenario 1. 42

6.1 FRIENDS hexacopter parameters and control input constraints. 65

6.2 MPC weight constants. 65

xiii

xiv

List of Figures

1.1 Real Hexacopter Model of Project FRIENDS. 2

2.1 Schematic representation of the various categories of optimization methods. 11

2.2 Example of SQP iteration Path for a problem with two optimization variables. 14

2.3 Example of IPM iteration Path for a problem with two optimization variables. 14

2.4 Example of a trajectory optimization problem that employs single shooting discritization. . 17

2.5 Example of a multiple shooting optimization where the defect of the equality constraints is

non-zero meaning the problem is infeasible. 18

2.6 Hermite-Simpson Collocation example. 20

2.7 Overview of a Model Predictive Controller. 21

2.8 Practical Asymptotic Stability illustration. 24

3.1 Representation of Inertial and Body frames. 26

3.2 Hexarotor with X configuration. 28

4.1 Representation of maximum and minimum altitude constraints imposed by the terrain profile. 35

4.2 Illustration of Time Elastic Band Formulation for multiple waypoints. 36

4.3 Illustration of a scenario where the initial guess of the optimization is outside the feasible

region. 37

4.4 Example of discrete data interpolation in 1D. 38

4.5 Graphical representation of the trajectory in the scenario with smooth terrain data and

large fixed time steps. 42

4.6 Graphical representation of the trajectory in the scenario with smooth terrain data and

small fixed time steps. 43

4.7 Graphical representation of the trajectory in the scenario with smooth terrain data and

with variable time intervals determined by the optimizer. 44

4.8 Graphical representation of the optimized states and inputs in the scenario with smooth

terrain data and with variable time intervals determined by the optimizer. 45

4.9 Graphical representation of the trajectory in the scenario with high terrain gradients. . . . 46

4.10 Graphical representation of the optimized states and inputs in the scenario with high ter-

rain gradients. 46

xv

4.11 Graphical representation of the trajectory in the scenario with a big terrain discontinuity

and low terrain-following cost KTF . 47

4.12 Graphical representation of the optimized states and inputs in the scenario with a big

terrain discontinuity and low terrain-following cost KTF . 47

4.13 Graphical representation of the trajectory in the scenario with a big terrain discontinuity

and high terrain-following cost KTF . 48

4.14 Graphical representation of the optimized states and inputs in the scenario with a big

terrain discontinuity and high terrain-following cost KTF . 48

5.1 PX4 Multicopter Attitude Controller. 51

5.2 PX4 Multicopter Angular Rate Controller. 52

5.3 ACADO Toolkit Architecture. 56

5.4 Schematic representation of the MPC’s software Architecture. 56

6.1 A draft of a multirotor helicopter with four non-symmetrical aligned rotors. 60

6.2 Gazebo model of the Project FRIENDS’ Hexacopter. 60

6.3 Gazebo model of the Project FRIENDS’ Sensor Box. 61

6.4 Gazebo Model of a Realsense D435 Camera. 61

6.5 Gazebo Model of a VLP-16 Lidar. 61

6.6 Gazebo world with terrain elevation data as floor. 62

6.7 PX4 Multicopter Control Architecture. 63

6.8 Scheme of the Control architecture of this Thesis. 64

6.9 Graphical representation of the 3D performance of the MPC while hovering around a fix

position, applied to the simulated FRIENDS’ hexacopter. 66

6.10 Graphical representation of the MPC output commands during the hovering mission. . . . 66

6.11 Graphical representation of the 3D performance of the MPC when a step on the y position

reference is introduced. 67

6.12 Graphical representation of the MPC output commands when a step on the y position

reference is introduced. 67

6.13 Graphical representation of the 3D trajectory executed without wind. 68

6.14 Position tracking error of the MPC during the mission without wind. 68

6.15 Graphical representation of the MPC output commands during the polynomial tracking

mission without wind. 68

6.16 Graphical representation of the 3D trajectory executed with wind and with EKF. 69

6.17 Position tracking error of the MPC during the mission with wind and EKF active. 69

6.18 Graphical representation of the MPC output commands during the polynomial tracking

mission with wind and EKF active. 70

6.19 Graphical representation of the 3D trajectory executed with wind and without EKF. 70

6.20 Position tracking error of the MPC during the mission with wind and EKF inactive. 71

xvi

6.21 Graphical representation of the MPC output commands during the polynomial tracking

mission with wind and EKF inactive. 71

6.22 Graphical representation of the 3D trajectory executed in the Terrain-Following Mission. . 72

6.23 Graphical representation of the vertical trajectory executed in the Terrain-Following Mission. 72

A.1 3D polynomial trajectory and optimization limits. 88

A.2 Optimized Polynomial trajectory. 88

xvii

xviii

.

xix

Nomenclature

Greek symbols

α Optimization search step.

χ Optimization Variable vector.

∆T Time Interval.

∆t Discretization Time.

η Body frame orientation vector.

λ Adjoint variables.

ω Natural frequency vector.

ωi Rotational velocity of rotor i.

φ, θ, ψ Roll, pitch and yaw Euler angles.

τ Time constant vector.

ξ Damping constant vector.

ζ Constraint Defect.

Mathematical Notation

∇2
χf Hessian function of f.

∇χf Jacobian function of f.

× Cross Product.

Roman symbols

e Unit vector.

F Optimization Function.

FB Terminal optimization cost.

FP Path optimization cost.

xx

f Dynamic system behaviour function.

Fg Force of gravity.

Fi Individual force in rotor i.

Fext External Forces vector.

g Gravity constant.

h Absolute altitude.

J Momentum of Inertia.

K Number of waypoints.

M Torque vector.

m Mass.

N Number of discretization steps.

p Inertial Frame position vector.

P Input cost matrix.

p Optimization search direction.

Q State cost matrix.

Rab Rotation matrix of a described in frame b.

R Final state cost matrix.

T̃ Normalized Thrust.

Th Time Horizon.

U Inputs vector.

v Velocity vector.

w Angular Velocity vector.

X States vector.

Subscripts

0 Initial Condition.

x,y,z Cartesian components.

cmd Command Input.

f Final Condition.

xxi

int Integrator state.

Superscripts

∗ Optimum solution.

+ Upper bound.

− Lower bound.

B Body Frame.

I Earth Frame.

des Desired.

ref Reference.

w Waypoint.

T Transpose.

xxii

Glossary

2D Two-Dimensional

3D Three-Dimensional

BVP Boundary Value Problem

CAD Computer-Aided Design

DEM Digital Elevation Map

EKF Extended Kalman Filter

ENU East, North, Up

EoM Equations of Motion

GB Gradient Based

IMU Inertial Measuring Unit

IPOPT Interior-Point Optimizer

LQR Linear-Quadratic Regulator

MPC Model Predictive Control

NLP Non-Linear Programming

NMPC Non-linear Model Predictive Control

ODE Ordinary Differential Equations

PID Proportional, Integral and Derivative

RHC Receding Horizon Control

ROS Robot Operating System

SDF Simulation Description Format

SITL Software-In-The-Loop

SQP Sequential Quadratic Programming

TA Terrain-Following

TF Terrain-Avoidance

UAV Unmanned Aerial Vehicle

xxiii

xxiv

Chapter 1

Introduction

This chapter starts by providing the motivation that prompted the development of this dissertation. Then

I introduce the state of the art that will act as a foundation for the study and implementation of the

proposed solution. Subsequently, the objectives of this dissertation are defined and finally the structure

of this document is detailed.

1.1 Motivation

The modern concept of Unmanned Aerial Vehicle (UAV) first appeared in 1849 when the Austrians

attacked the Italian city of Venice with 200 unmanned balloons loaded with bombs. During the first

World War, occurs the earliest attempt to use an unmanned aerial vehicle controlled from the ground

known as the ”flying bomb” [1]. Early efforts continued during the Inter-war Period and World War II and

were prompt by the military goal of reducing the loss of human life in the battleground [2].

However, in more recent years, this type of systems have gained significant popularity among aircraft

hobbyists, academic researchers and industries which has promoted a reduction in costs of several

sensors, actuators and batteries, making them more practical and accessible, technically enabling their

integration in a wide range of civil applications.

In fact, this increase in accessibility of sensors coupled with the fast improvement in efficiency

and processing power of small computers has allowed the integration of more computationally inten-

sive processes onboard the UAVs, such as 3D mapping and reconstruction, localization, planning and

optimization-based control techniques. All those advancements combined with ease of deployment, low

maintenance cost, remarkable agility and robustness [3] prompted the integration of these vehicles in

several areas such as infrastructure inspection [4], exploration tasks in unknown environment [5], search

and rescue operations as presented in Silvagni et al. [6], forest resources monitoring such as Berie and

Burud [7], police and military surveillance as shown in Rangel and Terra [8], mapping [9], cinematogra-

phy [10], food delivery[11], etc..

Project SEAGULL [12] is an example of the application of UAVs for surveillance and monitoring

missions. It is developed by the Portuguese Air Force in collaboration with several research institutes

1

and aims to support maritime situational awareness by developing intelligent systems based on UAVs

equipped with video and thermal cameras.

In some surveillance and inspection operations, measurements have to be performed close to the

objects of interest that are placed on the ground. This is the case for project FRIENDS1 (Fleet of dRones

for radIological inspEction, commuNication anD reScue), where this thesis is integrated on. Therefore,

the motivation for this paper arises from the requirement that the project’s UAV must navigate in close

proximity to the ground, where the expected low intensity sources of radiation are located, in order to

estimate the radioactivity level of the scenario using reduced sensitivity sensors.

The use of UAVs for monitoring and mapping of radioactive scenarios has gained popularity in recent

years with the appearance of several projects and commercial solutions.

In [13] a remotely controlled drone that can combine locational and radiological data performs radia-

tion detection and mapping in order to safely identify irradiated areas in the event of a nuclear emergency.

Similarly, in project MOBISIC [14] the goal was to construct a UAV capable of detecting, identifying and

localizing radionuclides, which can be components of a bomb.

The main interest of this thesis is to design a strategy capable of realizing autonomous flight by

optimizing and following trajectories in space, converting the multirotor platform, driven initially by a

human operator, into a fully Unmanned Autonomous Vehicle. In the tackled case of low-altitude flights

in irregular terrain such as mountainous regions, it is highly desirable to find a trajectory that not only

follows the terrain profile but also guarantees the safety of flight and takes the UAV to the destination by

optimizing certain factors including time, vertical position, acceleration, etc..

In the FRIENDS’ project, the Unmanned aerial system selected to perform the required mission is

a standard Hexarotor (see fig. 1.1) due to its agility and ability to perform tasks that humans or ground

vehicles are unable to do such as exploration missions in steep terrain or densely vegetated areas. It

consists of six electrical rotors with propellers mounted at the ends of a cross-shaped structure. The

dynamical configuration permits the take-off and land manoeuvres in reduced spaces, hover above

targets and the omnidirectional motion in the space making it the best option for low altitude missions.

Figure 1.1: Real Hexacopter Model of Project FRIENDS.

The following approach addresses the design of an onboard real-time predictive controller for the

1https://www.ipfn.tecnico.ulisboa.pt/FRIENDS/index.html

2

project’s UAV that is able to accurately and safely follow a pre-determined trajectory. The optimization of

this trajectory is based on the objectives and constraints that follow from the requirements of the project’s

surveillance and inspection missions.

1.2 Objectives

This thesis focuses on the design, implementation and validation of trajectory optimization and control

techniques for a hexacopter so that the vehicle can perform an inspection mission by safely following

waypoints while keeping its vertical distance to the ground approximately constant. In outdoor inspection

missions, maintaining the altitude above ground is fundamental to guarantee the safety of the UAV and

allow the measurements of onboard devices such as depth cameras and reduced sensitivity radioactive

sensors to be as accurate and useful as possible reducing errors and post-processing work.

However, it is also important to consider the limited range of the hexacopter dictated by its battery

capacity. This means the trajectory optimization process should also attempt to minimize the flight

time required to fulfil the waypoint tracking mission while satisfying maximum velocity and acceleration

constraints.

In this thesis is assumed that waypoints are only defined in the horizontal plane and are determined

during flight based on an intelligent algorithm developed by Brouwer [15] that uses the real-time sensor

data and terrain knowledge to determine the best curse of action. Therefore, and taking into account all

mentioned objectives, the overall problem of optimization is simultaneously a waypoint tracking problem,

a terrain-following problem and a minimum-time optimization.

Two different methods for trajectory optimization will be implemented and compared, in order to

determine the best trajectory that fulfils all mission goals.

The main objective of this thesis is the design of a complete control and navigation strategy capable

of executing the terrain following mission proposed by project FRIENDS. In order to achieve this goal, I

defined the following sub-objectives:

• Generate optimal trajectories that are able to perform terrain following and waypoint tracking while

minimizing flight time and fulfilling constraints imposed not only by the physical limitations of the

vehicle but also the characteristics of the mission and environment such as maximum velocity

restrictions imposed by the radioactive sensors;

• Implement a stable and robust controller capable of precisely track such trajectories even if sub-

jected to external disturbances.

Both objectives are implemented as separate optimization problems that will ultimately integrate

the high-level onboard navigation system of the UAV in a cascade architecture. The low-level control

is performed onboard by a separate computing unit called Pixhawk that runs the PX4 open-source

autopilot software. In this way, the vehicles will be able to follow optimal trajectories and perform an

efficient inspection mission in real-time without the need for a human operator.

3

1.3 State of the Art

The problem at hand can be divided into two main problems that have been intensively studied in the

last few years with the formulation, verification and validation of multiple strategies and algorithms. The

first problem is the generation of an optimal trajectory capable of maintaining a constant distance to the

ground while following a set of user defined horizontal waypoints. The second problem is the design of

a robust UAV controller that performs precise trajectory tracking.

1.3.1 Trajectory Generation

Although both problems could by simultaneously solved by one Model Predictive Controller, the intro-

duction of complex constraints and objectives such as terrain following and avoidance or minimum time

optimization can make the problem impossible to tackle in the short time tolerances allowed for a MPC.

Therefore, the optimization of the trajectory must be implemented as a separate optimization problem.

In the literature, there are two main ways of optimizing a UAV trajectory in space. The first is to

determine an optimum continuous path based on the optimization of the derivatives and coefficients of a

polynomial or the control points of a B-spline. The second set of methods is based on the discretization

of the model dynamics of the UAV by considering a vector of states and inputs that are evaluated at

each discretization point.

Terrain Following

Several studies have been conducted with the goal of designing a terrain-following trajectory for all types

of UAVs in two-dimensional flight in mountainous regions. This is the case of [16] where the trajectory is

optimized for minimum vertical acceleration and minimum flying time while satisfying the imposed terrain

following/avoidance constraints. The resulting optimization control problem is discretized by employing

a direct collocation method and then solved as a non-linear programming problem. Lu and Pierson [17]

and Menon et al. [18] formulated a similar problem but instead used an inverse dynamics approach

to solve achieve a numerical solution for the problem. Following this work, Feng et al. [19] proposes a

regeneration method capable of avoiding collision with previously unknown obstacles by using the Linear

Gauss Pseudo-Spectral method that locally re-optimizes the trajectory, evading unknown obstacles.

A similar approach presented by Khademi et al. [20] tackles the three-dimensional flight by also

implementing an optimal control problem formulation. In this case, the full dynamic system of the UAV

is considered in the optimization problem resulting in a 3D optimum terrain following-trajectory.

Another studied approach is to use a grid approximation scheme to convert the continuous con-

strained optimization problem into a discrete search problem, [21]. A variant of the Minimum Cost

Network Flow is applied to the problem and a solution is determined by minimizing a cost function based

on Digital Terrain Elevation Data and discrete dynamic equations of motion.

A different approach addressed by Rahim and Malaek [22] is the use of fuzzy logic methods to model

the flight altitude and gradient of the terrain. In that work, the implementation was done in two phases.

4

The first phase includes offline navigation in which path planning is done through cost function, flight

vehicle dynamics, and terrain data with the fuzzy method. The second phase includes online navigation

in a way that the flying vehicle follows the designed path while is capable of altering the parameters of

membership functions through fuzzy learning method to achieve the best solution.

As mentioned before, apart from discrete optimization models, it is also possible to optimize a con-

tinuous spline to perform terrain avoidance flight. This is the case of [23] where the tree search structure

is extended using a spline-RRT* method to generate smooth paths without any post-processing. A cost

function is used to ensure that the resulting paths are sufficiently far from several hazardous positions

and close to the surface of the local terrain.

Finally, the authors of [24] address the terrain-following problem in previously unknown environments,

where global trajectory planning methods cannot be applied directly. In this paper, a self-learning terrain

following method is proposed to realize the automatic generation of a terrain-following controller.

Waypoint Tracking

Another goal of this dissertation is to obtain a trajectory capable of flying through previously computed

waypoints. Since the previous objectives of the trajectory generation are mainly tackled by optimization

problems, it is fundamental to understand how this final objective can be incorporated in an equivalent

formulation.

A framework for autonomous trajectory generation through waypoints for UAVs is proposed in Es-

lamiat et al. [25] where the optimization framework consists of an optimal and smooth trajectory genera-

tion algorithm capable of minimizing the trajectory derivatives by approximating the UAV dynamics using

a discrete linear model.

Falanga et al. [26] presented a fast optimization control algorithm for quadrotors with a cable-suspended

payload based on an Euler-Lagrange dynamic model of the full system. This method is capable of flying

through waypoints by assigning a certain number of discretization steps between each waypoint and

then optimizing the time for each of the segments as an independent optimization variable, resulting in

a path with variable discretization time steps.

In order to maintain a constant discretization time step while flying through waypoints and still being

able to optimize the total trajectory time, Foehn and Scaramuzza [27] introduces a formulation where the

progress through the waypoints is bounded by complementarity constraints. Those progress variables

change via complementarity constraints if the UAV passes in close proximity to a waypoint, enabling the

simultaneous optimization of the trajectory and the time-allocation of the waypoints since they are not

allocated to a specific discrete node. The main setback with this method is the high non-convexity of the

problem that substantially increases the computation times.

Finally, in [28] the trajectory of the UAV is optimized based on a polynomial generation by minimizing

path derivatives and total segment time. This method uses jointly optimized polynomial path segments in

an unconstrained quadratic program. This approach generates high-quality trajectories much faster than

purely sampling-based optimal kinodynamic planning methods but sacrifices the guarantee of asymp-

totic convergence to the global optimum. Due to their continuous nature, it is also more complex to

5

introduce path constraints such as terrain-following in this formulation.

1.3.2 UAV Control

Designing a control system for aerial robots capable of performing precise trajectory tracking is funda-

mental to successfully perform exploration and inspection tasks in realistic outdoor environments where

external factors have to be taken into account. This leads to the formulation and study of a stable and

safe control technique capable of flying the UAV in real-time while avoiding obstacles and reducing the

effects of unpredictable external disturbances.

The simplest and most common strategy to control UAVs is the standard PID controller [29, 30]. This

technique disregards the dynamic model of the UAV and relies on a feedback mechanism capable of

following references and rejecting disturbances by running the state errors through a closed-loop based

on proportional, integral, and derivative terms.

A more complex approach is presented in [31] where precise trajectory-tracking control is developed

based on a Lyapunov back-stepping technique that approximates the non-linear dynamics of the UAV to

a linear state space. This controller was shown to be capable to follow reference trajectories by keeping

the attitude states bounded. Xingling et al. [32] also implemented a back-stepping controller subject

to parametric uncertainties and external disturbances. In this formulation, an extended state observer

is constructed to online estimate the unmeasurable velocity states and lumped disturbances allowing

for the implementation of a robust dynamic surface flight controller that guarantees asymptotic stabil-

ity. However, the previously mentioned back-stepping techniques have the limitation that the linearised

systems are only valid for conditions where the derivatives of the states are relatively low.

Along with back-stepping techniques, many different optimization control strategies have been pre-

sented to tackle the problem of trajectory tracking. In [33] a Non-Linear Guidance Logic is coupled with

Model Predictive Control to achieve real-time reference tracking. The trajectory problem is implemented

by representing the 3D path using only the multirotor’s jerk and then solving a convex optimization prob-

lem on each decoupled axis allowing for efficient control.

Another formulation is presented by Sferrazza et al. [34] where state and input trajectories are rep-

resented as linear combinations of Laguerre functions in order to approximate the infinite-horizon opti-

mization control problem. It accounts for disturbances by applying an iterative learning scheme resulting

in a controller with a tracking performance that improves over time. The use of the full dynamic system

of a UAV can be highly computational demanding, which resulted in approaches like the one presented

by Raffo et al. [35] where the dynamic motion equations used in the MPC are obtained by the Lagrange-

Euler formalism.

In this work, I propose the use of a non-linear Model Predictive Control (NMPC) scheme to solve the

problem of tracking a reference trajectory, in real-time and in a real-world scenario where disturbances

are present. My approach is based on the system simplification presented in [36] where the low-level

control is assumed to be controlled by a separate module. In this work the performance of a linear

Model Predictive Control applied to an approximation of the UAV dynamics is compared to a non-linear

6

implementation. The results of this work allow me to conclude that the non-linear MPC is not only

more computationally efficient but also displays a better performance when it comes to precisely follow

trajectories. This optimization control does not, however, include any specific restrictions regarding

terrain avoidance and obstacles due to the complexity of such constraints making it impossible to perform

real-time control. Therefore, it requires the development of a trajectory optimizer capable of determining

a safe and efficient terrain following trajectory.

1.4 Thesis Contributions

In order to fulfil the objectives and requirements mentioned this thesis tackled the development of a

offline optimum trajectory generator that compiles several different objectives and requirements usually

tackled separately to achieve the ideal path for the proposes of this project. This optimization problem

includes the tracking of 2D waypoints, the terrain-following objectives and constraints and the integration

of minimum time and acceleration objectives.

Regarding the control of the UAV it was implemented a MPC that considers external disturbances

and UAV dynamics and can be integrated as a high-level controller in several commercial autopilots.

This controller includes an External Kalman Filter capable of estimating the external forces acting on the

UAV reducing the steady state error of the MPC.

Finally, this thesis implemented a Simulation in Gazebo+SITL where a model of the project’s UAV

was created and tested allowing for the validation of the mentioned control and planning algorithms.

1.5 Thesis Outline

The outline of the remainder of the thesis is as follows:

Chapter 2 starts by presenting a theoretical overview of generic optimization problems by classifying

them and discussing the computational algorithms used to compute the desired solution. Then, it studies

the special cases of optimization control trajectories applied to offline and real-time problems.

Chapter 3 presents the deduction of the full mathematical model of a generic Hexacopter. This

model will later be used as a basis to derive a simplified dynamic system employed in the design and

implementation of the control strategies.

In Chapter 4 the strategy implemented for the trajectory optimization problem is described. The

Chapter starts by defining the objectives and proposed solutions for the optimum UAV trajectory. In the

end, the strategy is analysed and validated using an off-the-shelf optimization framework.

The problem of real-time control is addressed in Chapter 5. In this chapter, the dynamics of the UAV

model are simplified and a method of system identification is used to determine the new parameters.

An Extended Kalman filter is also designed and coupled with the final Model predictive control to reduce

the effect of external disturbances. This MPC is then constructed using a highly efficient optimization

control tool to be tested and implemented in a real drone.

7

Chapter 6 presents the setup of the simulation environment required to validate and verify the imple-

mented control strategy as well as the interface with the PX4 software used in the low-level control of

the real UAV.

Finally, Chapter 7 evaluates the thesis as a whole, summarising the goals achieved and discussing

what could be improved as future work.

8

Chapter 2

Theoretical Overview

In this chapter, an overview of the formulation and solving techniques of linear and non-linear optimiza-

tion problems is presented. Then, I discuss the special cases of optimal control trajectories that try to

find the best path for a dynamic model given an objective function and a set of constraints. In this type

of optimization problem, a discretization algorithm is required to convert the continuous-time dynamics

of the robot into a set of equality and inequality constraints. Finally, I describe some basic concepts

and properties of a Model Predictive Control (MPC), also called Receding Horizon Control (RHC), that

allows the implementation of a real-time, robust and stable control strategy for the FRIENDS’ project

Hexacopter.

2.1 Optimization Overview

Optimization is the task of finding the best solutions to particular problems. These solutions are found

by adjusting the problem’s parameters to give either a maximum or a minimum value for the optimization

function. The optimization function is usually called the cost function since in the majority of optimization

problems it represents the variables’ cost.

The general statement of an optimization problem where the goal is to minimize the objective function

is:

Minimize F(χ)

w.r.t. χ , (2.1)

subject to Gi(χ) = 0, i ∈ E

Hi(χ) ≤ 0, i ∈ I

where F is the cost function, χ is the vector of optimization variables, E and I are the sets of equality

and inequality constraints respectively [37].

Based on the definition of the objective function F and the constraints Gi and Hi with respect to the

9

optimization variables, optimization problems can usefully be divided into linear and non-linear, which

dictates the complexity of the methods required to compute the optimum solution.

Due to their complexity, non-linear problems may have many local optimum solutions, which are

minimum in a specific sub-region of the solution space. Unfortunately, for general non-linear, and in

particular non-convex problems global minimizers are hard to find in practice since there is only local

knowledge of the function F and its derivative with respect to the optimization variables, ∇χF . Due to

this local knowledge limitation, the only way to guarantee that the global minimizer is found is to evaluate

the objective function F in a big portion of the feasible state space using Heuristic Methods. However,

if the problem has a big number of optimization variables or the feasible state space is too large these

methods can require considerable computation times. In order to make these optimizations practical

for real-life applications, it is often necessary to use more efficient methods that only evaluate a small

number of vectors χ. As a consequence, if we construct an algorithm under these restrictions we can

not be sure if we reached a global minimizer. Nevertheless, we are often able to identify a so-called local

minimizer which is considered acceptable in some cases [38].

Optimization problems can be further divided as discrete or continuous based on which values the

optimization variables can be assigned with. In some problems, the parameters χ can take any real val-

ues to give an optimal solution, but in others, this parameters are constrained to have the form χi ∈ Z,

where Z is the set of integers, or binary constraints (integer programming) or even a mixture of real

and integer or binary variables (mixed-integer programming). In these cases, the values of the objective

functions and constraints may change significantly when moving between feasible points making the op-

timization problem highly non-convex, and therefore far more difficult to solve. By contrast, in continuous

problems, since χ can take on any real numbers the optimization problems become easier to solve as

due to its smoothness it is possible to deduce the values of the objective function and constraints around

a specific point in χ [37].

After defining the optimization objective as a mathematical function, it might be thought that calculus

could be employed effectively to find the optimum solution. This is true, but the number of differential

coefficients required, and the complexity of the resulting algebra, for anything other than simple problems

with a very small number of variables in vector χ, rule out this approach for most practical applications.

Therefore, it is necessary to select an alternative numerical method suited for the defined problem.

There are two main categories of iterative algorithms that take substantially different approaches to

find the solution: deterministic and heuristics. Heuristic methods try to search for a global optimal

solution by exploring the feasible subset in some structured manner based on a heuristic function. This

category includes methods such as Genetic Algorithms [39], Ant Colonies [40] and Particle Swarm [41],

etc. Deterministic methods take advantage of the analytical properties of the problem to generate a

sequence of points that converge to a local optimal solution. These can be Gradient Free (GF) or

Gradient-Based (GB).

10

Figure 2.1: Schematic representation of the various categories of optimization methods [42].

Brute Force Methods

The most basic Heuristic optimization algorithm is the Brute Force method, where the optimal value

of a function is determined by systematically calculating all possible solutions and decide afterwards

which one is the best. This approach in optimization requires considerable computation power making

it only feasible for small problems (in terms of the dimensionality of the state space) since the number

of possible states of the system increases exponentially with the number of dimensions. In the case of

continuous predictor variables, the number of states is infinite and this method cannot be used directly.

Despite these drawbacks, brute force methods do have the benefit of being rather simple to imple-

ment since no gradients or intelligent heuristics are required. As a consequence, brute force methods

are often seen as reference algorithms for calculating the number of states, or the number of calculations

necessary to find the global optimum solution. Hence, it can be used for the estimation of the effort to

solve a problem.

Gradient Based Methods

The algorithms described here, generally called gradient-based methods, have proved effective in finding

optimal values of functions, but not necessarily global optimum. If the problem is non-convex and the

optimization function has many local minima then the likelihood that the algorithm will find the global

optimum diminishes and depends heavily on the initial guess. One method used to avoid being stuck on

a local minimum is the use of multiple starting points distributed in the design space, however, depending

on the number of optimization variables, this can substantially increase the computation time required

to determine the solution.

These numerical methods utilize the information of the first and sometimes second-derivatives of the

objective function (and/or constraints) to choose the best direction in the design space that leads to the

optimal solution. This leads to much fewer function evaluations required to achieve the closest minimum

when compared to Heuristic methods. If the objective function is known to be smooth and the design

variables are continuous, the GB algorithms are typically the best choice.

In GB it is also important to consider the methods employed to compute the derivative information

11

of the objective function known as sensitivity analysis methods, required to drive the iteration process

towards the optimum solution. The ideal method to compute the gradient of a function is the through

analytic computations which directly differentiates said function. However, this method can only be used

if the function is defined analytically with respect to the optimization variables, which does not happen

for the majority of the cases. An alternative method is the Finite-Difference (FD) approximation that uses

local approximation algorithms to derive the gradient of the cost function every iteration with respect to

all the optimization variables.

Depending on the characteristics of the problem, gradient-based methods can be further divided

into unconstrained (Steepest Descent [43], quasi-Newton [44], etc.) and constrained optimization (Re-

duced Gradient [45], Sequential Convex Programming [46], etc.), depending on the existence or not of

constraints.

Unconstrained Optimization

Although most optimization problems are constrained, it is very useful to understand how unconstrained

optimization problems are solved since the basic principles are similar [38].

In order to solve an unconstrained optimization problem with a twice continuously differentiable ob-

jective function an initial guess for the optimization variables, χ0, must be provided. A good initial guess,

i.e., a vector close to a minimizer, can usually only be obtained by utilizing knowledge on the process.

The algorithm starts with an initialization step, α, and a new estimate of the solution χ∗ is computed

according to χ = χ + αp, where p is the search direction. This process is repeated iteratively until the

convergence conditions are verified and a solution is computed. If the conditions are not met, then it is

necessary to keep searching, so a new search direction and step length are computed, ensuring that

the condition F(χ) < F(χ) is respected [38].

The most common method used to compute the search direction and step length using a line-search

strategy is the Newton method [38]. First the local behaviour of the objective function F at the current

iterate χ is approximated by second order Taylor series expansion as follows,

F(χ+ p) ≈ F(χ) + pT∇χF +
1

2
pT∇2

χFp . (2.2)

where ∇χF and ∇2
χF are, respectively, the gradient and Hessian of the objective function. This approxi-

mation is minimized in order to compute the search direction p. The corresponding step length can then

be determined by minimizing F (χ) with respect to α. The search direction and step length are, finally,

used to determine the new value of the design variables χ and the loop restarts [38].

Constrained Optimization

The following definition of Constrained Optimization is based on the work presented in [38, 47].

As previously stated, most optimization problems, and in particular optimal control problems, have to

satisfy sets of equality and inequality constraints.

12

Following the formulation presented in equation (2.2), the equality and inequality constraints, Gi and

Hi respectively, will change the feasible set making it not include the global optimum of the unconstrained

problem. Therefore it is necessary to modify the search method by altering either the magnitude of the

step, α, via a line-search or the direction itself, p.

First, all constraint functions are replaced by suitable approximations. The simplest is the linear

approximation.

After defining the constraints approximations and determine the feasible set of solutions and their

boundaries it is necessary to compute the search direction for the next iteration of the optimization

problem. The feasible moving directions are now restricted by all the equality constraints Gi and by

some inequality constraints. If Hi(χ) > 0 holds, then since Hi is continuous I get Hi(χ+ αp) > 0 for all

p ∈ Rn provided α > 0 is sufficiently small. If, however, Hi(χ) = 0 holds, then an arbitrarily small change

of χ in the ”wrong” direction may lead to Hi(χ + αp) < 0. In the first case, the inequality constraints

are called inactive and in the second case they are called active since they restrict the feasible search

directions [38].

In order to deal with all active constraints, C(χ), including equality constraints, it is necessary to

introduce a auxiliary function called Lagrangian:

L(χ, λ) = F(χ)− λTC(χ) (2.3)

which is a scalar function of the χ and the Lagrange multipliers λ. The idea behind this definition is that

the additional term −λTC(χ) penalizes violations of the state constraints.

Based on the Lagrangian it is possible to define a linear system referred to as the Kuhn-Tucker (KT) or

Karush-Kuhn-Tucker (KKT) system which connects the gradient of the cost function to active constraints

by serving as a guideline to find local minimizers in the constrained optimization.

Finally, the optimization algorithm can proceed as in the unconstrained case and look for the mini-

mizers of the cost function F amongst the feasible points of χ.

There are two common approaches to solve non-linear constrained optimization problems. These

are the so-called Sequential Quadratic Programming (SQP) and the Interior-Point Method (IPM).

In SQP the solution converges to the optimum by simultaneously improving the objective and tighten-

ing feasibility of the constraints. However, only the optimal and final iteration is guaranteed to be feasible.

This results from the fact that SQP works computing the search direction p by solving the KKT equations,

which due to their cost nature do impose that the intermediate iterations are inside the feasible set. This

is a major advantage of this method since the computation of feasible points in the case of non-linear

constraint functions may be a difficult task [48].

The class of interior-point methods generate a iteration sequence which always lies in the interior of

the feasible set. For generating this sequence, in each iterate the entire set of inequality constraints Hi,

presented in equation (2.2), is used by transforming them into equality constraints using slack variables

as follows,

13

Figure 2.2: Example of SQP iteration Path for a problem with two optimization variables. The Feasible
Region is represented in yellow. The intermediate iterations can be outside the feasible region.

min
si≥0

Hi(χ)− si, i ∈ I . (2.4)

This way the number of constraints to be considered in each iteration may become considerably

larger and thus the computational effort in each iteration grows. On the other hand, one avoids the

potentially time-consuming identification of the working set [38].

Figure 2.3: Example of IPM iteration Path for a problem with two optimization variables. The Feasible
Region is represented in yellow. The intermediate iterations allows stay inside the feasible region.

2.2 Trajectory Optimization

Numerical trajectory optimization algorithms find the optimal path by representing mathematically a robot

with motion equations. This optimum solution is a sequence of controls that moves the dynamic system

14

between an initial and final point in state space. The trajectory will minimize some cost function, which

is typically an integral along the trajectory while satisfying a set of user-defined constraints.

Numerical trajectory optimization algorithms solve variations of the following problem,

Minimize FB
(
t0, tf , X(t0), X(tf)

)
+

∫ tf

t0

FP
(
τ,X(τ), U(τ)

)
dτ

w.r.t. t0, tf , X(t), U(t) ,

subject to Ẋ(t) = f
(
t,X(t), U(t)

)
system dynamics

X− ≤ X(t) ≤ X+ path state bounds

U− ≤ u(t) ≤ U+ path control bounds

t− < tf ≤ t+ limits on final time

X(t0) = X0 initial state boundary

X−f ≤ X(tf) ≤ X+
f limits on final state

where X(t) represents the vector of states, U(t) is the set of control variables at time t and FB , FP
are the terminal and path costs respectively. A state variable is a variable that is differentiated in the

dynamics equation, whereas a control variable only appears algebraically [49].

This optimization problem is also called a two-point boundary value problem (BVP) since it is de-

fined by a set of ordinary differential equations (ODE), that describe the system dynamics, with the

specification of state values in the boundaries of the problem, X(t0) and X(tf).

The dynamic constraints of the system, f
(
t,X(t), U(t)

)
, are continuous functions of the optimization

variables and must be converted to discrete-time models in order to be introduced in the optimization

problem as equality and inequality constraints.

The following discretization methods are based on the work of Betts [47].

Single Shooting

Single shooting is probably the simplest method for transcribing an optimal control problem. This method

solves boundary value problems by first considering an initial value problem where only the initial state

is bounded. The system dynamics are then iteratively simulated until the final boundary value problem

is satisfied.

As shown in figure 2.4 the optimization interval can further be divided into N sub-steps to reduce the

transcription errors. However, due to the formulation of this method, in every iteration of the optimization,

all sub-steps of the trajectory are re-optimized but only the final state Xf must satisfy the final boundary

value problem, which can result in large changes in the path from iteration to iteration [47].

This method can be divided into direct and indirect formulations. Direct shooting methods integrate

the state equations directly between the discretization nodes. Therefore, the variables for a direct shoot-

ing application are chosen as a subset of the initial and final conditions and the parameters. Thus for

each phase the vector of optimization variables χk is defined as:

15

χk = {X(t0), t0, X(tf), tf , p} (2.5)

The total set of NLP variables to optimize is then

χ ⊂ {χ1, χ2, . . . , χN} (2.6)

Indirect shooting methods iteratively solve the initial value problem and then evaluate constraints to

adjust initial conditions. Therefore, for indirect shooting, the variables are chosen as a subset of the

boundary values for the optimal control necessary conditions. In this case, the Hamiltonian is defined

as:

H = FP (t, X, U) + λT f (2.7)

where λ adjoins the equations of motion constraints to the path objective function. The conditions for

optimality require that λ satisfy

λ̇ = −
(
∂H

∂X

)T
(2.8)

∂H

∂U
= 0 (2.9)

To obtain the adjoint vector, equation (2.8) is integrated back in time starting from the terminal con-

dition.

λ̇ = −
(
∂f

∂X

)T
λ−

(
∂FP
∂X

)T
(2.10)

λ(tf) =
∂JP (Xf , tf)

∂X
(2.11)

Now, the optimal control U() must minimize the Hamiltonian function and can be computed over the

time period by solving for U .

(
∂JP
∂U

)
+

(
∂f

∂U

)T
λ = 0 (2.12)

Therefore, for the indirect shooting case the NLP variables are as follows,

χ = {λ(t0), tf} (2.13)

A major difference between direct and indirect shooting occurs in the definition of the control functions

U(t). For indirect shooting, the control is defined at each point in time by the maximum principle (2.9).

Thus in some sense, the values λ(t0) become the ”parameters” that define the optimal control function.

For direct shooting, the control must be defined implicitly or explicitly at each discretization node by a

16

Figure 2.4: Example of a trajectory optimization problem that employs single shooting discritization
(Image from [50]).

finite set of parameters p that are part of the set of optimization variables [47].

However, these methods suffer from a big setback when solving non-linear problems. The essential

shortcoming of these methods is that small changes introduced early in the trajectory can propagate into

very non-linear changes at the end of the trajectory. While this effect can be catastrophic for an indirect

method, it also represents a substantial limitation on the utility of a direct formulation [47].

Multiple Shooting

In a general form, the multiple shooting method can be stated as follows: compute the unknown initial

values y(t0) = y0 for each shooting segment such that the boundary condition

0 = φ[y(tf), tf] (2.14)

holds for some value of t0 < tf which satisfies ẏ = f(y(t), t), where y is the set of dynamic variables in

the optimization problem.

Multiple shooting works by breaking up a trajectory into some number of shorter segments and using

single shooting to solve for each segment. Thus I break the time domain into smaller intervals of the

form

t0 < t1 < · · · < tN = tf (2.15)

As the segments get shorter, the relationship between the optimization variables and the objective

function and constraints becomes more linear, reducing the discretization errors.

Let me denote yi for i = 0, . . . , (N − 1), as the initial value for the dynamic variable at the beginning

of each segment. For segment i I can integrate the differential equations from ti to the end of the

segment at ti+1. Denote the result of this integration by y′i. Collecting the results for all segments let me

17

define a set of NLP variables

χ = {y0,y1, . . . ,yN−1} (2.16)

In multiple shooting, the end of one segment will not necessarily match up with the start of the next

if the problem is infeasible, as shown in figure 2.5. This difference is known as a defect, and it is added

to the constraint vector in order to be minimized [47].

c(χ) =

y1 − y′0

y2 − y′1
...

φ[yN, tf]

 = 0 (2.17)

Figure 2.5: Example of a multiple shooting optimization where the defect of the equality constraints is
non-zero meaning the problem is infeasible.(Image from [50]).

One obvious result of the multiple shooting approach is an increase in the size of the problem that

the Newton iteration must solve since additional variables (the start of each segment) and constraints

(defects) are introduced for each shooting segment. Although it might seem that this would make the

low-level optimization problem harder, it actually turns out to make it easier because the Hessian matrix

∇χF which appears in the calculation of the Newton search direction is sparse since variables early in

the trajectory do not change constraints at the end of it.[47]

The multiple shooting concept can be incorporated into either a direct or indirect method. The dis-

tinction between the two occurs in the definition of the dynamic variables y, the dynamic system, and

the boundary conditions. For a direct multiple shooting method, I can identify the dynamic variables y

with the state and control (X,U). By analogy, the dynamics are given by the original state equation and

path constraints. For an indirect multiple shooting algorithm, the dynamic variables y must include the

state, control, and adjoint variables (X, U, λ). The dynamics are given by the original state equations

and the appropriate necessary conditions for the adjoint variables [47].

18

One difficulty with direct shooting methods is that it is difficult to implement path constraints since

the intermediate state variables are not decision variables in the non-linear program. Another difficulty

with shooting methods, particularly with direct shooting, is that the relationship between the decision

variables and constraints is often highly non-linear, which can cause poor convergence in some cases

[49].

Some of the most commonly used numerical techniques for Direct Single and Multiple shooting dis-

cretization are the Runge-Kutta methods, which are a family of implicit and explicit iterative methods.

The most widely known member of the Runge-Kutta family is the 4th order Runge-Kutta method where

the system dynamics is approximated by the present value (Xi) plus the weighted average of four in-

crements, where each increment is the product of the size of the interval, ∆ti, and an estimated slope

specified by the dynamics f .

X ′i = Xi +
1

6
(k1 + 2k2 + 2k3 + k4) (2.18)

ti+1 = ti + ∆ti (2.19)

where the coefficients kj are defined by the system dynamics in four midpoints as

k1 = f(ti, Xi, Ui) (2.20)

k2 = f(ti +
∆ti
2
, Xi + ∆ti

k1

2
, Ui) (2.21)

k3 = f(ti +
∆ti
2
, Xi + ∆ti

k2

2
, Ui) (2.22)

k4 = f(ti + ∆t,Xi + ∆tik3, Ui) (2.23)

Collocation

Just as in multiple shooting, in collocation or transcription methods I break the time domain into smaller

intervals of the form (2.15). Let me consider taking a single step with an explicit method such as Euler’s.

Following the multiple shooting methodology, I then must impose constraints of the form

0 = Xi+1 −X ′i = Xi+1 − (Xi + ∆ti fi) (2.24)

where ∆ti = ti+1 − ti for all of the segments i = 0, . . . , (N − 1).

The NLP variables then become the values of the state and control at the grid points, namely,

χ = {X0, U0, X1, U1, . . . , XN−1, UN−1} (2.25)

The set of NLP variables may be augmented to include the times t0 and tf and, for some discretiza-

tions, the values of the state and control at collocation points between the grid points. Similarly to

multiple shooting, the key notion of the collocation methods is to replace the original set of ODE with a

19

set of defect constraints ζi = 0 which are imposed on each interval in the discretization.

Of course there is no reason to restrict the approximation to an Euler method. One of the most

popular and effective choices for the defect constraint in collocation methods is the Hermite-Simpson

method:

0 = Xi+1 −Xi −
∆ti+1

6
[fi+1 + 4fi+ 1

2
+ fi] = ζi (2.26)

Figure 2.6: Hermite-Simpson Collocation example from Kelly [49].

This method provides a higher-order approximation when compared to the Euler method, resulting

in a smaller transcription error at the cost of higher computation times. The Hermite-Simpson method

approximates the objective function and system dynamics as piecewise quadratic functions by intruding

an additional collocation point, fi+ 1
2
, in the middle of the original transcription segment. An additional

benefit of the Hermite-Simpson collocation method is that the state trajectory is a cubic Hermite spline,

which has a continuous first derivative [49].

Schemes of this type are referred to as collocation methods because the solution is a piecewise

continuous polynomial that collocates (i.e. satisfies) the ODE’s at the so-called collocation points in the

subinterval ti ≤ t ≤ ti+1. The points ti are also called grid points, mesh points, or nodes.

The non-linear programming problem which results from this formulation is large, similar to what

happens in the multiple shooting method. Fortunately, the pertinent matrices for this NLP problem,

namely the Jacobian and the Hessian are also sparse. Consequently exploiting sparsity to reduce both

storage and computation time is a critical aspect of a successful implementation when using a direct

transcription method [47].

2.3 Model Predictive Controller

In this section, I will discuss the concept and capabilities of Model Predictive Control. MPC is based

on iterative, finite-horizon optimization where an explicitly formulated process model is used to predict

future behaviour. Similar to the trajectory optimization described previously, the general design objective

of MPC is to determine the optimum values for the control variables U(t) in the prediction horizon that

minimize a cost function based on the plant output X(t). Its primary applications are stabilization and

tracking problems.

The optimization performed by a Model Predictive Controller is illustrated in figure 2.7 and can be

20

described as follows: at time t the current plant state is sampled and an optimization problem is numer-

ically solved for a relatively short time horizon in the future: [t, t + Th]. The control problem is solved

using the methods described in the trajectory optimization problems until time t+Th by discretization the

dynamics in N steps. The optimum solution is a cost-minimizing control strategy of which only the first

step is implemented in the real robot model. Then the plant state is sampled again and the calculations

are repeated starting from the new current state, yielding a new control and new predicted state path.

The prediction horizon keeps being shifted forward and for this reason, MPC is also called Receding

Horizon Control (RHC) [51].

The time horizon Th and the sampling stepsN of the control problem are critical and must be carefully

determined in order to find a balance between a better control performance achieved with large Th and

a reasonable and low computation time achieved with a lower Th.

Figure 2.7: Overview of a Model Predictive Controller taken from [52].

Similar to the Trajectory optimization problem, most MPC controllers are able to account for con-

straints both in manipulated variables and states/controlled variables through the formulation of the

optimization problem.

MPC strategies are also in general applicable to non-linear dynamics of the form:

Ẋ = f(X,U) (2.27)

When formulating the optimization problem in MPC, it is important to ensure that it can be solved

in the short time available. For that reason, the optimization problem is typically cast into a Quadratic

programming (QP) formulation where the objective function used is the common and popular Linear

Quadratic Regulator (LQR). Therefore, the state feedback-based MPC optimization problem takes the

following form [53]:

21

Minimize ‖Xt+N −Xref
t+N‖

2
R +

N−1∑
i=0

(
‖Xt+i −Xref

t+i ‖
2
Q + ‖Ut+i − Ureft+i ‖

2
P

)
(2.28)

w.r.t. X, U

subject to Xt+i+1 = f(Xt+i, Ut+i)

Xt = X(t)

Xt+i ∈ XC

Ut+i ∈ UC

where i is the index along the prediction horizon, N is the length of the prediction horizon, Q, R, P

are the state error, goal state error and control action error weight matrices respectively, Xt+i is the

predicted system state vector, Xref
t+i is the state reference signal, Ut+i is the predicted approximately

optimal control action, Ureft+i is the input reference, the subscript t + i is used to denote the sample of a

signal at i steps ahead of the current time t, while t+ i+ 1 indicates the next evolution of that step, UC,

XC represent the set of input and state constraints respectively and X(t) is the value of the state vector

at the beginning of the current MPC iteration.

In order for a solution in this problem to exist and be unique, Q, R and P should be real and symmet-

ric, and in particular, Q should be positive semi-definite and P and R positive definite. These matrices

can be tuned for each situation in order to obtain the desired optimal solution.

The solution of this optimization problem leads again to an approximately optimal control sequence

{U∗t , U∗t+1, . . . , U
∗
t+N−1}

where only U∗t is applied while the whole process is then repeated.

2.3.1 Stability

The stability formulation present in this subsection is derived from the work introduced in [38, 54, 55].

In order to verify that my non-linear MPC controller achieves asymptotic stability, I will utilize the

concept of Lyapunov functions and Lyapunov Stability Theory.

Consider the system in eq. (2.29), let X be a set that contains a point X ′ and f(Xi) = Y ⊆ X be a

subset of the state space.

Xi+1 = f(Xi), X(0) = X0 (2.29)

where Xi ∈ X with i ≥ 0 is the time step sequence that satisfies the model, and X ′ is an equilibrium

point of the system, i.e. f(X ′) = X ′.

For this formulation, we say that X ′ is locally asymptotically stable if there exists η > 0 and a contin-

uous function β such that the inequality

22

|Xi|X′ ≤ β(|X0|X′) (2.30)

holds for all |X0|X′ ≤ η.

We say that X ′ is asymptotically stable on a forward invariant set Y with X ′ ∈ Y if there exists β such

that (2.30) holds for all X0 ∈ Y and we say that X ′ is globally asymptotically stable if X ′ is asymptotically

stable on Y = X.

A function V : Y → R+
0 is a Lyapunov function on Y if there exists functions α1 and α2 that are

continuous, strictly increasing and bounded with α(0) = 0 and a function αv that is continuous and

strictly increasing such that:

α1(‖X −X ′‖) ≤ V (X) ≤ α2(‖X −X ′‖) (2.31)

V (Xk+1) ≤ V (X)− αv(‖X −X ′‖) (2.32)

holds for all X ∈ Y .

Then, if the system (2.29) admits a Lyapunov function V on a forward invariant set Y , I can conclude

that X ′ is an asymptotically stable equilibrium on Y .

Therefore, the goal is to find an optimal value function, (2.33), that is also a Lyapunov function,

proving stability for a general MPC formulation with an infinite prediction horizon.

VN (X0) := inf
U admissible

FN (X0, U) (2.33)

where FN (·) is the optimization function (2.28) with N → inf.

However, this formulation can only be applied directly to infinite horizon problems, requiring the ad-

dition of a terminal feedback law that can include either a terminal constraint or a regional terminal state

cost in the case of finite-horizon problems. Nevertheless, general constrained optimization problems

can be extremely difficult to solve, and simply adding terminal constraints may not be feasible without

reformulating the problem.

The MPC formulation presented in (2.28) can be written asFN (X0, U) = Ff (Xt+N)+
∑i=0
N−1 Ff (Xt+i, Ut+i).

For this formulation I impose the following requirements:

• The horizon cost Ff (Xt+i, Ut+i) satisfies Ff (0, 0) = 0 and Ff (Xt+i, Ut+i) ≥ αv for all Xt+i ∈ YN ,

Ut+i ∈ U, where YN ⊂ X is the set of initial feasible states;

• The terminal cost Ff (Xt+N) satisfies Ff (0) = 0, Ff (Xt+N) ≥ 0 for all Xt+N ∈ Xf , where Xf
is a terminal set that is invariant under the terminal control law, and there exists a control law

Kf : Xf ⇒ U such that Xf (f(Xt+i,Kf (Xt+i)))−Xf (Xt+i) ≤ Xf (Xt+i,Kf (Xt+i)) for allXt+i ∈ Xf ;

• The set Xf is positive invariant under Kf (Xt+i);

If all those requirements are fulfilled than the set of feasible positive initial states, YN , is positive

invariant for the closed loop system and if X ′ ∈ YN and VN is continuous on some neighbourhood of X ′,

23

then X ′ is asymptomatically stable in SN .

For the formulation presented in (2.28), the term final cost term ‖Xt+N −Xref
t+N‖2R has a critical role

for the closed-loop stability, as it accounts for the impact of events that may lie beyond the finite horizon

by imposing a terminal safe region X0 around X ′.

Figure 2.8: Practical Asymptotic Stability illustration.

24

Chapter 3

Hexarotor Dynamics and Kinematics

As mentioned before, the goals of this dissertation are to implement a trajectory optimizer and controller

that are capable of generating and following optimal trajectories for an Hexarotor. To determine this

trajectory while fulfilling all mission requirements and satisfying dynamical constraints of the UAV is

fundamental to understand the kinematic model that describes the multicopter.

The chapter starts by defining two reference systems of coordinates that are fundamental to derive

the mathematical model. Then, I analyse the full dynamics of a generic Hexarotor by defining the forces

and moments acting on it during a flight mission and finally I derive the equations of motion that fully

describe the multirotor.

3.1 Reference systems for the hexacopter

In order to derive the equations of motion (EoM) for a multirotor I consider the preliminary assumption

that the curvature of the Earth and its rotation can be ignored in the mission’s area since the duration

and scale of the operation is considerably small when compared to the Earth.

Writing the equations that portray the complex dynamics of an aircraft implies first defining the system

of coordinates to use. Therefore, it is useful to define two coordinate systems:

• A Earth fixed frame {I} (eI
x; eI

y; eI
z) tangent to the earth surface. Such frame is considered Inertial

based on the previous assumption and uses the East, North, Up (ENU) system of coordinates.

• A body fixed frame {B} (eB
x ; eB

y ; eB
z) whose center coincides with the center of mass of the

vehicle and such that eB
z is in the same direction of thrust generation.

In the {I} frame the origin of the referential is free, meaning it can be placed based on the problem

characteristics. In this case, it is set as the initial position of the UAV’s center of gravity. This location was

chosen to match the local origin of the state estimator incorporated in the flight controller that estimates

position based on the integration of IMU data. The positive direction of the eI
z axis is in the direction

normal to the earth ground level and pointing up. The remaining eI
x and eI

y axis point East and North

respectively as shown in fig. 3.1.

25

Figure 3.1: Representation of Inertial and Body frames. The green frame is the Body frame that is fixed
to the UAV. The black frame is the Inertial Frame that is fixed to an arbitrary point.

In control theory, knowledge about the dynamic behaviour of a given system can be acquired through

its states. The vehicle configuration is described by the position of center of mass in the inertial frame

{I} and the orientation of the {B} frame with respect to the inertial frame [56]. The last is usually defined

by means Euler angles: roll φ, pitch θ and yaw ψ. For sake of simplicity, let me denote the vectors for

inertial position and body frame orientation by means of p = [x, y, z]T and η = [φ, θ, ψ]T , respectively,

where φ ∈]− π/2, π/2[, θ ∈]− π, π[, and ψ ∈]− π, π[.

Notice that Siciliano et al. [57] states that the attitude representation using Euler angles suffers from

the so-called gimbal-lock or loss of one degree of freedom when θ = ±k π2 , with k = 1, 3, 5, How-

ever, in this project those singularities do not pose a significant problem since the designed controlled

does not allow for those pitch angles.

Now I must deduce the equations describing the orientation of the mobile frame relative to the fixed

one, which can be achieved through successive rotations about the three axes. I will use a ez − ey − ex

rotation where I first rotate about eI
z by the the yaw angle. This is followed by a rotation about the ey

axis in the rotated frame through the roll angle, followed by a third pitch rotation about the new ex axis

through the pitch angle that results in the following rotation matrix [58]:

RBI(η) =

cθcψ cψsθsφ − cφsψ cφcψsθ + sφsψ

cθsψ cφcψ + sθsφsψ cφsθsψ − cψsφ
−sθ cθsφ cθcφ

 (3.1)

where c and s are shorthand forms for cosine and sine, respectively.

Then the translational transformation law for the multirotor is defined by:

ṗ = RBI(η)vB (3.2)

where the absolute linear velocity of the aerial vehicle is defined by the vector vB.

26

As for the rate of change of the Euler angles, in order to represent the angular velocity of the Body

Frame {B} with respect to the inertial frame I consider a new rotation matrix that derives from the

measurement of the angular rates in different rotated frames. The roll angle undergoes two rotations,

the pitch angle one rotation, and the final Euler angle, the yaw, is measured in the Inertial Frame {I}

with no rotations. Therefore, the rotational transformation law can be defined by:

wB = LIB(η)η̇ =

1 0 −sφ
0 cφ sφcθ

0 −sφ cθcφ

 η̇ (3.3)

where the angular velocity of the aerial vehicle around each axis of the {B} frame is defined by the

vector wB and LIB is the Euler rate rotation matrix from frame I to frame B.

3.2 Applied forces and torques

In order to derive equations of motion for the full system, the following assumptions taken from Alexis

et al. [59] have to be made:

• The hexacopter is a rigid body;

• The hexacopter has a symmetrical structure;

• The body frame B has its origin in the Center of Mass (CoM) of the hexacopter ;

• All external forces are applied on CoM and therefore do not cause torques;

To mathematically write the movement of an aircraft I must employ Newton’s second law of motion:

mv̇I =
∑
i Fi

J ẇB = −wB × (JwB) +
∑
iMi

(3.4)

where m is the mass, Fi and Mi are the vectors of forces and torques applied in the rigid-body, re-

spectively and J ∈ R3×3 is the mass moment of inertia, where J is aligned with the body axes, given

by

J =

Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

 (3.5)

The axis of each propeller is parallel to the third axis of the {B}. Each propeller generates thrust

along its axis that is proportional to the square of the propeller rotation speed. Furthermore, as the

motor dynamics are considerably faster compared to those of the vehicle body and can be neglected.

The FRIENDS’ project drone is a generic Hexarotor X geometry, with six rotors, mounted symmetri-

cally along two orthogonal axes, as depicted in fig. 3.2. The axis of each propeller is parallel to the third

27

axis of the {B}. Each propeller generates thrust along its axis that is proportional to the square of the

propeller rotation speed. Furthermore, as the motor dynamics are considerably faster compared to those

of the vehicle body and can be neglected [56]. The individual thrusts are denoted by Fi ∈ R, i = 1, ..., 6.

Note that if a propeller is spinning ”clockwise”, then the two adjacent ones will be spinning ”counter-

clockwise”, so that torques are balanced if all propellers are spinning at the same rate.

During flight, the main forces applied in the hexarotor are:

• Force of gravity represented on frame I: Fg = −mg

• Rotor’s Thrust represented on frame B: Fi = knω
2
i

where kn is the Thrust constant and ωi ≥ 0 is the rotational velocity of i-th rotor.

Figure 3.2: Hexarotor with X configuration adapted from [60].

As mentioned in [36, 61], I can additionally consider the influence of two important aerodynamic

effects that appear in case of dynamic manoeuvres. These effects are the blade flapping and induced

drag, which induce forces in the x-y rotor plane that contribute to the horizontal stability UAV as shown in

Mahony et al. [58]. Although these two effects are treated as separate in [58], Omari et al. [62] showed

that it is possible to combine these effects into a lumped coefficient Ad = diag(cxd , c
y
d, 0). If the UAV is

symmetric in the x-y axis the two coefficients can be further considered as equal, cxd = cyd = cd.

This leads to the aerodynamic force Fa,i:

Fa,i = FiAdvB (3.6)

The roll and pitch torques derive from the propellers’ thrust and can be determined byMi =
∑
ri×Fi,

where ri is the momentum arm of each propeller’s thrust in the {B} referential.

Finally, the yaw torque is produced by varying the angular velocity of propellers rotating ”clockwise”

and the ones rotating counter ”clockwise” creating unbalance in the sum of moments with respect to eB
z

due to differences in rotor’s drag, causing rotation.

28

All together, I find that the torques in the body frame are:

MB =

d kn(−ω2
1 + ω2

4 + 1
2 (−ω2

2 + ω2
3 + ω2

5 − ω2
6))

d kn
√

3
2 (ω2

2 + ω2
3 − ω2

5 − ω2
5)

b(ω2
1 − ω2

2 + ω2
3 − ω2

4 + ω2
5 − ω2

6)

(3.7)

where b is the rotor’s drag coefficient that relates the yawing moment about the body z-axis to the thrust

of the six motors and d is the momentum arm for the symmetrical hexacopter.

In order to simplify the implementation of the dynamic equations in the optimization problems de-

signed in the next chapters, the translational dynamics of the UAV are fully defined in the Inertial frame

{I}. Therefore, in the following total dynamics of the vehicle, the state vI = [ẋ, ẏ, ż] is used to represent

the linear velocity in the I frame:

ṗ = vI

wB = LIB(η)η̇

v̇I =
1

m

(
RBI(η)

6∑
i=1

Fi +RBI(η)

6∑
i=1

Fa,i + Fext + Fg

)
(3.8)

ẇB = J−1(−wB × JwB +MB)

where Fext is the vector of the external forces acting on the vehicle (i.e wind).

29

30

Chapter 4

Trajectory Generation Formulation

This chapter addresses the problem stated in Section 2.2 applied to the objectives defined for this

project. Therefore, I design an optimization problem capable of generating optimal and feasible dis-

crete trajectories for a multicopter UAV in such a way that certain non-linear dynamic constraints and

linear/non-linear non-dynamic constraints are satisfied and a cost function is optimized.

The algorithm was formulated using Python’s symbolic framework CasADi [63] and was solved with

the open-source and highly efficient IPOPT (Interior Point OPTimizer) 1 solver that is designed to find

(local) optimum solutions of large-scale non-linear optimization problems using an interior-point method.

Alternative strategies were also investigated and tested in simulation. A different approach, described

in Appendix A, was studied, where instead of optimizing the trajectory based on a discretization of

the non-linear UAV dynamic system, the waypoint and minimum time objectives are converted into an

optimization problem that treats the multirotor trajectory as a piecewise continuous polynomial function

where the optimization variables are the polynomial coefficients.

In the end, although the polynomial optimization is considerably less computationally demanding and

the final UAV trajectory is smoother due to the continuous formulation, I concluded that the alternative

approach did not fulfil the terrain-following and avoidance objectives in the way they are imposed by the

FRIENDS project, as it is not possible to define constraints directly on the dynamic states and inputs of

the UAV and there is no freedom to optimize the altitude of the overall trajectory since each waypoint

must be fully defined in 3D space to be converted into a polynomial. In other words, the altitude of each

waypoint must be enforced by the user and therefore is not an optimization variable as desired.

4.1 System Dynamics

In this section, I describe the system dynamics applied in the trajectory optimization problem. As pre-

viously mentioned, the goal of the trajectory generation is to determine the optimal control path to be

executed by the multirotor. This path is directly used in the optimization control described in the next

section by setting the result of the trajectory problem as the reference for the Model Predictive Controller.

1https://coin-or.github.io/Ipopt/

31

In the next chapter, I explain why and how the system dynamics of the multirotor can be simplified

in order to be efficiently used in the control problem. This simplification approximates the rotational

dynamics of the UAV by a first-order system and instead of using the usual rotor’s rotational velocity as

inputs, I use normalized thrust and attitude references.

In this optimization problem, using the same approximated model as the MPC is important, not only,

to reduce the computation time, but also to facilitate the integration of the optimization result in the

MPC. However, the model used in the MPC does not allow for constraints in angular velocity or linear

acceleration that are required to obtain a smooth trajectory. In order to include such constraints, the

attitude dynamics applied in this optimization problem are approximated by a second-order system with

respect to η of the form present in [64], that allows the control inputs to be the desired angles like in the

MPC but gives a good estimation of the angular velocity. In fact, since I am approximating the attitude

dynamics of the system and not defining the real dynamics of the PID controllers, this second-order

approximation was found, through system identification tests in several simulated flights, to represent

more accurately the attitude response of the system when compared to the first order approximation

used in the MPC. In order to minimize and set a maximum limit for linear acceleration, I added an

integrator to the system dynamics, since the translational dynamics that describe a multirotor do not

include acceleration as a state.

The full UAV dynamics used in the trajectory generation is described by the following equations:

ṗ = vI , (4.1a)

v̇I = RBI(η)

0

0

T̃

+

0

0

−g

 , (4.1b)

η̇ = wI , (4.1c)

ẇI = −2ξωwI + ω2(Kηcmd − η) . (4.1d)

where wI = [φ̇, θ̇, ψ̇]T is the vector of the Inertial Frame angular rates, T̃ is the mass normalized

Thrust command, ξ = [ξφ, ξθ, ξψ]T , ω = [ωφ, ωθ, ωψ]T and K = [Kφ, Kθ, Kψ]T are the vectors of

damping factor, natural frequency and gains for the second order approximation of the attitude dynamics

respectively and ηcmd = [φcmd, θcmd, ψcmd]
T is the vector of attitude reference inputs. All the dynamic

constants are obtained through a system identification curve fitting that outputs the vectors ξ, ω and K.

The dynamics of the added velocity integrator is as follows:

v̇int = a . (4.2)

where vint is a state of the integrator that represents the velocity of the UAV and a is the acceleration

in the inertial frame I defined as an input in the integrator’s dynamics. In order to link the integrator

dynamics with the overall multirotor dynamic model, the velocity vint must be equal to the velocity of the

UAV model, vI. This is guaranteed by adding the following path constraint:

32

vint = vI . (4.3)

The described system dynamics represent the following state vector

X =
[
pT vTI ηT wTI vTint

]T
(4.4)

And control input vector, U, consisting of four inputs,

U =
[
T̃ φcmd θcmd ψcmd aT

]T
(4.5)

4.2 Waypoint Objective

As previously mentioned, one of the objectives of this optimization problem is to generate a trajectory

capable of passing through pre-defined waypoints. However, and unlike most previously studied cases,

those waypoints are only defined in the 2D horizontal plane. This formulation is chosen because another

goal of the trajectory optimizer is to follow and avoid the terrain which means that the vertical coordinate

z should be fully determined by the optimization process. Therefore, in the following formulation each

waypoint is represented by the vector pwk = [xwk , y
w
k] .

Table 4.1: Representation of waypoint discrete allocation.
time t0 · · · T1 · · · TK = tf

x x0 free xw1 free xwK
y y0 free yw1 free ywK
z z0 free

Let the set of K waypoints be given by tuples (pw1 , T1), (pw2 , T2), · · · (pwK , TK), where the time instants

corresponding to these waypoints are denoted by the subscript Tk, with k = 1, . . . ,K. These time

instants to which the waypoints are allocated too are initially considered fixed and user defined based on

the distance between waypoints and the maximum horizontal velocity allowed. To generate a trajectory

passing through this sequence of waypoints one would typically define a distance cost or constraint and

construct a discrete optimization control problem such that the output state vector XTk
passes through

the waypoints at specified time instants, i.e. p′Tk
= pwk , for k = 1, . . . ,K.

For cost-based formulations, quadratic distance costs are robust in terms of convergence and imple-

mented as

Fdist,k = (p′Tk
− pwk)T (p′Tk

− pwk) (4.6)

where p′Tk
is the part of the state vector X that represents the horizontal position state at a user-defined

time Tk. However, such a cost-based formulation is only a soft requirement and if summed with other cost

terms does not imply that the waypoint is actually passed within a certain tolerance [27]. To guarantee

that the trajectory passes all waypoints within a tolerance, a constraint-based formulations can be used,

33

such as

(p′Tk
− pwk)T (p′Tk

− pwk) ≤ σ2
w (4.7)

which in the general problem is part of the set of inequality path constraints, and ensures the optimized

trajectory passes by pwk at instant Tk within tolerance σw.

4.3 Terrain Following and Terrain Avoidance Objective

The safe flyable motion in the vicinity of complex terrain in the vertical plane is named Terrain-Following

(TF), whereas the motion in the horizontal plane is called Terrain Avoidance (TA) [16]. The high com-

plexity of the terrain when incorporated in the problem with the vehicle flying dynamics can result in

optimization not only highly convoluted but also non-convex. However, in most cases of this type of

problem, a local minimum is considered acceptable if the appropriate constraints are fulfilled since it

would be impractical to analyse the entire state space, with many minimums and maximums in the

terrain model, to compute the global minima.

In my formulation, in order to be used by the optimizer, it is assumed that the terrain being followed

is preliminarily available from a known DEM file. Terrain following necessarily entails terrain collision

avoidance because the optimal aircraft flight path must be free of terrain obstacles while maintaining the

aircraft as close to the desired altitude above ground as possible. A variety of different techniques have

been used to plan such trajectories. Typically, a weighted norm of the aircraft distance from the terrain is

used as a performance index. In addition, since the cost is an integral over the path, this choice of cost

together with the dynamic constraints and time optimal cost does not keep the aircraft as close to the

desired altitude as possible, but rather minimizes the distance only in an ”average” sense [65]. Consider

the difference between the drone’s height above the terrain and the desired altitude,

h(t) ≡ z(t)− hdes − hterrain
(
x(t), y(t)

)
(4.8)

where hterrain
(
x(t), y(t)

)
is the height of the terrain at the multirotor’s position, hdes is the desired altitude

above ground and
[
x(t), y(t), z(t)

]
is the 3D position of the UAV in the inertial ENU referential.

The terrain-following problem involves minimizing the altitude distance to the desired altitude above

ground.

FTF =

∫ tF

t0

kTF [h(t)]2 dt (4.9)

where h(t) is squared to guarantee differentiability of the cost function with respect to the states and kTF

is a constant coefficient that adjusts the weight of this cost function in the total cost of the optimization

problem.

Finally, the Terrain Following and Avoidance problem require the definition of additional path con-

straints (see fig. 4.1) to guarantee that the UAV does not fly above a maximum height, defined in this

34

project by the sensors operational range, and below a minimum absolute height defined by the altitude

of the ground [16, 65].

h− ≤ h′(t) ≤ h+ (4.10)

where h′(t) is the drone’s height above the terrain defined as:

h′(t) ≡ z(t)− hterrain
(
x(t), y(t)

)
(4.11)

Figure 4.1: Representation of maximum and minimum altitude constraints imposed by the terrain profile.
The circles represent discretization nodes of the optimization problem and the blue line illustrates the
UAV path.

In practice, the minimum altitude above ground, h−, must be equal or higher than a set clearance

height, used so that the aircraft maintains a safe tolerance above the terrain to compensate for flight

control errors or other disturbances.

4.4 Time-Optimal Objective

One of the biggest limitations when designing a UAV trajectory is the battery capacity and thus its auton-

omy on air. Therefore, to perform a long-range mission it is fundamental to minimize as much as possible

the flight time. In trajectory optimization problems, it is common to include the total trajectory time, tf ,

as an optimization variable and defining the number of collocation points, N , for the discretization of the

dynamics as the independent variable.

Optimizing for a time-optimal trajectory means that the problem’s cost function must contain a term

penalizing the total trajectory time, Ft = tf . Therefore, the optimization variable tf must be positive

tf > 0 which allows the integration step to be safely determined as ∆t =
tf
N .

The main problem of a time-optimal trajectory arises when this objective is coupled with the waypoint

tracking problem.

As mentioned before, adding waypoints to a trajectory requires that a cost or constraint is allocated

to a specific node at a time that depends on the total trajectory time, tk = k∆t. This means that even if I

optimize the total time tf the time tk is still a fraction of tf . In most of the optimization problems, it is not

possible to know a priori how much time or what fraction of the total time is optimal to spend between

35

two waypoints, making it impossible to determine the optimum solution with such formulation [27].

In order to solve this limitation, Neunert et al. [66] implemented an intermediate waypoint cost spread

along the trajectory using an exponential weight formulation. However, the waypoint objective is defined

as a soft constraint where parameters such as the width and mean of the time spread must be user-

defined leading to suboptimal solutions in most cases. Another approach is presented by [27] which

introduces complementary constraints that change a set of progress variables every time the trajectory

passes in the proximity of each waypoint. This approach does not allocate costs or constraints to a

specific node allowing for almost optimum time solutions. However, due to the use of complementary

constraints, the optimization problem becomes considerably more complex which results in very long

computation times.

The approach described in this paper to tackle this problem is similar to what Falanga et al. [26] im-

plemented and is based on a time elastic band, where now we no longer assume that the time allocated

to each waypoint node Tk is fixed. Therefore, I formulated that the time to go from one waypoint to the

next, ∆Tk, is now an optimization variable. This implies different discretization steps ∆t for each way-

point segment. Unfortunately, allowing varying time steps ∆tk can negatively impact the discretization

consistency over the trajectory mainly if the resulting ∆tk are very different from each other. In order to

solve this limitation, if ∆tk is higher than a certain threshold, based on the dynamic constraints of the

UAV and errors of discretization, the k section of the trajectory is re-optimized with a higher number of

collocation points.

In this formulation, the node in which the UAV must go through each of the waypoints is fixed, how-

ever, that node’s time is an optimization variable, allowing for an independent time optimization for each

waypoint. Therefore, the independent and fixed variable in this formulation is the number of discretiza-

tion intervals between each waypoint, Nw
k . In this way, the integration time for each node is different for

every waypoint path segment as illustrated in fig. 4.2 and is defined by

∆tk =
∆Tk
Nw
k

. (4.12)

where ∆Tk = Tk − Tk−1 is an optimization variable that represents the time necessary to go from

waypoint pwTk−1
to pwTk

.

Figure 4.2: Illustration of Time Elastic Band Formulation for multiple waypoints. The black dots represent
the discretization nodes. The waypoints are represented by the blue dots and the tolerance.

36

Finally, in order to optimize the total trajectory time a cost function penalizing the terminal time is

added:

Ft =

∫ tf

t0

ktimedτ = ktime(tf − t0) (4.13)

where ktime is the terminal cost factor and tf is the total trajectory time defined in this formulation by the

sum of the times of every waypoint.

tf =

K∑
i=1

∆Tk . (4.14)

Another advantage of the implemented time elastic band is the possibility of stretching the time

interval between waypoints if there are any obstacles in the path. In the particular case of Terrain

Following and Avoidance, since the waypoints are only defined in the horizontal plane, the initial time

guess might be too small if the UAV has to climb or descent steep terrain, as demonstrated in fig. 4.3.

Figure 4.3: Illustration of a scenario where the initial guess of the optimization, represented in blue, is
outside the feasible region and after the optimization, the optimal path, represented in red, requires a
bigger discretization step to have the nodes outside the terrain obstacle.

4.5 Terrain Modelling

The terrain used in the optimisation problem is modelled using a matrix of elevation data provided by a

DEM (Digital Elevation Map) file. This data was collected in previous manual commanded missions using

a Lidar sensor. The point cloud obtained is then processed and saved as a set of x and y coordinates,

and a matrix of z coordinates representing the elevation. In order for the solution algorithm to be effective,

smooth derivatives of the terrain data are required [65]. In CasADi this can be achieved with the use of

the 2D lookup-tables feature that provides C2 continuity by approximating the data matrix with a tensor

product cubic B-spline (Fig. 4.4) of the form

hterrain(x, y) =

n1∑
i=1

n2∑
j=1

ci,jBi(x)Bj(y) , (4.15)

where ci,j are a set of coefficients and Bi(x) and Bj(y) form the basis for cubic B-splines. In addition,

CasADi calculates gradients of the lookup-tables by way of analytic derivatives, reducing the numerical

errors of the approximation.

37

Figure 4.4: Example of discrete data interpolation in 1D. The discrete data is represented in blue by
discontinuous steps that are approximated by a polynomial that allays passes the middle point of the
original discrete step data.

4.6 Solver Implementation

The Trajectory optimization problem described in this chapter is implemented and tested using the

CasADi toolbox 2 that is flexible and can be used to define almost any optimization problem without

the restrictions of the black box architecture of most tools designed to solve very specific problems like

Altro [67], OpEn [68] or GuSTO [46].

CasADi is an open-source software tool for generic numerical optimization problems. It is available

for C++, Python and MATLAB/Octave with almost no difference in performance.

As stated in [63], CasADi can generate derivative information efficiently using algorithmic differen-

tiation, to set up, solve and perform forward and adjoint sensitivity analysis for systems of ordinary

differential equations (ODE) as well as to formulate and solve non-linear program problems. CasADi

is a general-purpose tool for gradient-based numerical optimization that tries to provide the user with a

set of ”building blocks” that can be used to implement general-purpose or specific-purpose OCP solvers

efficiently with a modest programming effort.

There are several NLP solvers interfaced with CasADi. The most popular one is IPOPT. Others, that

require the installation of third-party software, include SNOPT[69] and KNITRO [70]. Whatever the NLP

solver used, the CasADi generates automatically the information that it needs to solve the NLP. Typically

an NLP solver will need a function that gives the Jacobian of the constraint function and a Hessian of

the Lagrangian function with respect to optimization variables [71].

4.6.1 Problem Discretization

The trajectory of a flying robot can be accurately modelled as a collection of some discrete points in

a continuous coordinate system from the initial time to the final time. More precisely, if the number

2https://web.casadi.org

38

of these identified points is sufficiently high, a suitable continuous trajectory can be recovered as a

passable approximation of the main path [16].

As mentioned in section 2.2, there are several discretization methods that could be applied in this

trajectory optimization problem. I decided to use collocation methods since they have several numerical

advantages over other techniques, such as shooting methods. Furthermore, although they result in

larger optimization problems, these are sparse and can be solved very fast [47, 72].

I incorporate the system dynamics as equality constraints between time steps Xi and Xi+1 using a

first-order backward Euler approximation. Such an equality constraint represents the minimization of the

defect variable ζi defined as:

ζi = Xi+1 −Xi − f(Xi+1, Ui+1)∆tk . (4.16)

where f(Xi+1, Ui+1) is the derivative of the robot states in the collocation point i + 1 derived from the

solution of equations (4.1).

This first-order approximation is the simplest possible integration scheme and therefore leads to

efficient computation. Furthermore, it results in a well-defined approximation of the non-linear problem

which can be provided to CasADi that easily computes its derivatives (Jacobian and Hessian) using

numerical approximations such as the finite differences method.

4.6.2 Optimization Function

As previously described, the trajectory optimization problem implemented has more than one objective

that must be optimized and fulfilled. However, the optimization function is defined as a scalar at each

collocation point which means that the objectives are not minimized individually and a compromise

between them needs to be found to obtain the best solution.

In order to satisfy all the necessary objectives, the final cost function implemented in the problem is

defined as the sum of independent objective functions. The compromise in the solution is determined

by the relative weighting applied to each cost which can substantially change the optimum trajectory.

However, defining the cost function as a sum of all the objectives of this project can lead to unwanted

results. For example, if the cost defined in (4.6) is added together with all the other costs it is possible that

the optimal solution does not go through the waypoints if the relative weights are not defined correctly.

Therefore, the implemented cost function only includes some of the objective functions while the other

objectives will be fulfilled by a set of path constraints.

The final implemented optimization function is a weighted sum of the minimum time cost defined in

(4.13), the terrain following cost (4.9), a minimum acceleration cost function defined in (4.17) and a yaw

cost (4.18) that aims to keep ψ equal to the angle between the previous and next waypoints.

The acceleration cost is as follows:

Fa =

∫ tf

t0

aT kaadt (4.17)

39

where a is the acceleration vector of the UAV defined in the added integrator by equation (4.2) and ka is

the weight coefficients for the acceleration.

The yaw cost is defined as:

Fψ =

∫ tf

t0

kψ[ψ − ψdesk]2dt (4.18)

where kψ is the weight of this cost function and ψdesk is the desired yaw for the waypoint segment

k = 1, . . . ,K defined as:

ψdesk = atan2
(ywk − ywk−1

xwk − xwk−1

)
(4.19)

where xwk and ywk are the x and y coordinates of the k-th waypoint.

4.6.3 Constraints

Equality Constraints

The constraints of an optimization problem can be defined as path and boundary constraints.The path

constraints are evaluated during the optimization whilst the boundary constraints are only applied to

the initial and final states. In this case, all the equality constraints are defined in the boundaries of the

optimization and are the following:

X(t0) = X0 bound on initial state[
x(tf), y(tf)

]
= (xf , yf) bound on final waypoint[

η(tf), vI(tf), wI(tf)
]

= (03×1, 03×1, 03×1) bound on final state

(4.20)

Inequality Constraints

In contrast to the equally constrained case, now the number of inequality constraints may be greater

than the number of variables to optimize. For this problem, the set of path inequality constraints are the

waypoint tracking constraint defined in (4.7) and the limits for the minimum and maximum height allowed

above the terrain presented in equation (4.10). Additionally, a constraint for maximum horizontal velocity

is added to ensure the sensor data collected by the UAV can be correctly used.

v2
x + v2

y ≤ (V +
xy)2 Maximum horizontal velocity constraints (4.21)

Other than the path constraints some state and input inequality constraints were applied to prevent

over actuation leading to undesired high pitch and roll.

40

|vz| ≤ V +
z Maximum vertical velocity constraints

|φ̇| ≤ φ̇+ Maximum roll rate constraints

|θ̇| ≤ θ̇+ Maximum pitch rate constraints

|ψ̇| ≤ ψ̇+ Maximum yaw rate constraints

(4.22)

T̃− ≤ T̃ ≤ T̃+

|φref | ≤ φ+ Actuation constraints

|θref | ≤ θ+

|a| ≤ a+

(4.23)

4.6.4 Experimental Results with Validation Data

Several different tests were made, varying the terrain profile, waypoint arrangement and even discretiza-

tion steps. In the end, I chose to present the results of three scenarios to assess the capabilities and

difficulties of the selected approach. The tests were conducted on a Hp Laptop running Ubuntu 18.04

and equipped with an Intel Core i7-9750H CPU @2.60GHz and 16,00GB of RAM.

The model constants and coefficients common to all the studied scenarios are presented in the

following tables. On the left table, I show the second-order attitude dynamic parameters from equation

(4.1d) which are constants obtained from the system identification procedure described in the next chap-

ter applied to the simulated Hexacopter model. The right table contains the state and path limits of the

problem’s inequality constraints defined in the previous section.

Table 4.2: Trajectory optimization parameters and coefficients.

Attitude Constants

Kφ 0.9757
Kθ 0.9862
Kψ 0.9762
ωφ 6.2179
ωθ 6.0429
ωψ 3.8762
ξφ 0.9353
ξθ 0.9216
ξψ 0.8653

Optimization Limits

V +
xy 1.0 [m/s]

V +
z 1.0 [m/s]

φ̇+ 180 [◦ /s]

θ̇+ 180 [◦ /s]

ψ̇+ 25.0 [◦ /s]

T̃− 7.0 [m/s2]

T̃+ 15.0 [m/s2]

φ+ 25.0 [◦]

θ+ 25.0 [◦]

a+ 1.0 [m/s2]

The first scenario is a simple example that uses terrain elevation data obtained from United States

Geologic Survey National Elevation Dataset 3. In this scenario I included three waypoints bounded to a

specific node and with a tolerance σw = 0.5[m] as described in section 4.2. The number of discretization

steps was chosen to be N = 80 based on the horizontal distance and maximum velocity between

waypoints. For the height constraints I chose to set the minimum and maximum altitude allowed above

3https://viewer.nationalmap.gov

41

the terrain to h− = 2.5m and h+ = 3.5m respectively.

This scenario was tested with three different time formulations to show the advantages and dis-

advantages of the time-optimal method. Initially, I tested the scenario with large fixed time intervals

between waypoints ∆Tk. The fixed discretization time steps for this case are presented in table 4.3. The

optimization results of this scenario are presented in figures 4.5.

Table 4.3: Time steps of the optimum trajectory on Scenario 1.

∆t1 ∆t2 ∆t3

0.363 [s] 0.400 [s] 0.375 [s]

(a) Top-down view of the trajectory. (b) Trajectory in Altitude.

Figure 4.5: Graphical representation of the trajectory in the scenario with smooth terrain data and large
fixed time steps.

For the second test of this initial scenario, the fixed time step was reduced to small values that

resulted in an infeasible problem. For this optimization, IPOPT converged to a point of local infeasibil-

ity. Some of the results of this test are represented in figure 4.6 where it is shown that the maximum

horizontal velocity constraint and the maximum and minimum altitude constraints were not fulfilled.

In the third test, the time-optimal formulation introduced in section 4.4 is employed where the time

intervals between waypoints are adjusted by the optimizer. The final discretization time steps for each

waypoint segment are presented in table 4.4. The optimized trajectory is shown in figure 4.7 where it

is possible to confirm that the waypoint tracking and terrain-following objectives of the trajectory were

fulfilled with the altitude of the UAV remaining inside the allowable interval. The remaining system states

and inputs can be seen in Figure 4.8 that show the that the maximum horizontal and vertical restrictions

are fulfilled. The yaw results is also optimized according to the cost function that aims to keep the UAV

pointing towards the next waypoint, while the maximum angular rate for yaw is respected. Finally, the

acceleration constraints are also fulfilled contributing for a relatively smooth trajectory.

Table 4.4: Time steps of the optimum trajectory on Scenario 1.

∆t1 ∆t2 ∆t3

0.178 [s] 0.198 [s] 0.197 [s]

This test was executed a total of 50 times in order to obtain a good estimate of the computation time

42

(a) Top-down view of the trajectory. (b) Trajectory in Altitude.

(c) Optimized Velocity.

Figure 4.6: Graphical representation of the trajectory in the scenario with smooth terrain data and small
fixed time steps.

necessary to solve the problem with IPOPT. The mean computation time was then determined to be

0.842 [s] for this scenario.

The three tests performed in the first scenario allowed me to conclude that the time-optimal formu-

lation shows better results when compared to using arbitrarily large fixed time steps since the resulting

trajectory for the time-optimal test is not only shorter in terms of time but also in terms of traveled space.

The second test illustrates the infeasible case that occurs when the time step used is smaller than the

minimum time imposed by the input and path constraints of the mission. The final test used the time-

optimal formulation which solves the problems of the previous tests by determining the time interval as

part of the optimization process.

However, one of the drawbacks of this time optimal formulation is the possibility that it becomes very

large if it is required by the problem scenario. Those large ∆t increase substantially the discretization

error, mainly in the simple Euler method employed and can result in trajectories that do not satisfy

the problem constraints for large segments of the path since the constraints are only imposed in the

discretization nodes.

In the second scenario, an artificial terrain profile was created with trigonometric functions in order

to obtain steep ground inclinations with relative smoothness. This scenario is similar to the example

illustrated in figure 4.3 where the optimization’s initial guess is outside the feasible region. For this test,

43

(a) Trajectory in 3D. (b) Top-down view of the trajectory.

(c) Trajectory in Altitude.

Figure 4.7: Graphical representation of the trajectory in the scenario with smooth terrain data and with
variable time intervals determined by the optimizer.

I used a higher number of discretization steps, N = 200, since the distance between the two waypoints

is considerably higher than in scenario 1 and it is important to have a small discretization step to reduce

model errors and make sure the constraints are always fulfilled. Similarly to the first scenario, in this

case I also set the minimum and maximum altitude allowed to h− = 2.5m and h+ = 3.5m respectively.

The optimized trajectory, displayed in figure 4.9, confirms that the safety altitude constraints are

fulfilled for the entire path despite the high terrain inclinations that result in a small feasible space for

the z coordinate. The final trajectory time is tf = 37.966[s] which corresponds to a discretization step

of ∆t = 0.190[s]. In this scenario, the minimum trajectory time is also limited by the vertical velocity

which, as seen in figure 4.10, results in two moments where the horizontal speed is reduced to make

sure the UAV stays inside the feasible region. The attitude peaks present in the beginning and end of

the trajectory are caused by the higher cost attributed to the total trajectory time when compared to the

minimum acceleration cost. Even thought, this formulation causes the UAV to accelerate sharply in the

beginning and end of the path the dynamic constraints are always fulfilled.

Once again the optimization process for this scenario was repeated 50 times and a mean computa-

tion time for the iterative process performed by IPOPT was determined to be 1.066 [s].

Finally, the third scenario is formulated to assess the results of the proposed approach when the ter-

rain data contains a significant discontinuity that could represent a cliff or wall. In this case, I introduced

44

(a) Optimized Velocity. (b) Optimized Attitude.

(c) Optimized Attitude Rate. (d) Acceleration Commands from the Integrator.

Figure 4.8: Graphical representation of the optimized states and inputs in the scenario with smooth
terrain data and with variable time intervals determined by the optimizer.

a 7 m wall in the altitude matrix data with 0.9 m of width. From the previous scenario, I can conclude that

as the terrain becomes steeper and more discontinuous the feasible tunnel of the z coordinate becomes

less wide and for a vertical wall it would result in an impossible problem. Therefore, for the following

scenario I did not implement the maximum altitude constraint but instead relied on the terrain following

cost (Eq. (4.6)) to maintain the UAV close to the desired altitude. If the weight kTF is higher the resulting

trajectory will climb the wall almost vertically to maintain the vertical distance to the ground as constant

as possible, if this weight is smaller the minimum time objective takes over and the trajectory transposes

the wall with an arc-like trajectory.

To take this into account this third scenario was tested with two different cost weights kTF . In the

results present in figures 4.11 and 4.12 I used kTF = 0.05 and in figures 4.13 and 4.14 the weight was

set to kTF = 0.5. In both tests the number of discretization steps was N = 200 and the minimum altitude

allowed was h− = 2.5m.

The optimized trajectory shown in figure 4.11, confirms that if the maximum altitude constraint was

implemented the optimization problem would become infeasible due to the small space between the

two bounds. The altitude plot also shows that the cubic spline used to represent a continuous terrain

profile introduces considerable oscillations when approximating discontinuities, meaning it is not ideal to

represent such terrain profiles.

45

(a) Trajectory in 3D. (b) Top-down view of the trajectory.

(c) Trajectory in Altitude.

Figure 4.9: Graphical representation of the trajectory in the scenario with high terrain gradients.

(a) Optimized Velocity. (b) Acceleration Commands from the Integrator.

Figure 4.10: Graphical representation of the optimized states and inputs in the scenario with high terrain
gradients.

The final trajectory time is tf = 37.966[s] which corresponds to a discretization step of ∆t = 0.190[s].

The mean computation time for the iterative optimization process in this case is 5.719 [s].

The trajectory generated in the second test, shown in figure 4.13, stays below the hypothetical max-

imum altitude for almost the entire path which results in a close to vertical climb when in the proximity of

to the wall. Therefore, the optimized trajectory takes more time to complete when compared to the first

46

(a) Trajectory in 3D. (b) Top-down view of the trajectory.

(c) Trajectory in Altitude.

Figure 4.11: Graphical representation of the trajectory in the scenario with a big terrain discontinuity and
low terrain-following cost KTF .

(a) Optimized Velocity. (b) Acceleration Commands from the Integrator.

Figure 4.12: Graphical representation of the optimized states and inputs in the scenario with a big terrain
discontinuity and low terrain-following cost KTF .

test resulting in tf = 38.363[s] which corresponds to a discretization step of ∆t = 0.192[s].

Finally, due to the high gradients of the altitude constraints and the closer proximity to the wall this

test requires a higher computation time with a mean of 10.526 [s] over 50 optimizations.

Although the minimum altitude constraint is always fulfilled, the UAV is considered as a point meaning

that in the second test a 3D UAV would collide with the wall in the horizontal plane. To solve this problem

47

further improvement in the UAV representation or the minimum altitude function should be performed in

future work.

(a) Trajectory in 3D. (b) Top-down view of the trajectory.

(c) Trajectory in Altitude.

Figure 4.13: Graphical representation of the trajectory in the scenario with a big terrain discontinuity and
high terrain-following cost KTF .

(a) Optimized Velocity. (b) Acceleration Commands from the Integrator2.

Figure 4.14: Graphical representation of the optimized states and inputs in the scenario with a big terrain
discontinuity and high terrain-following cost KTF .

48

Chapter 5

Model Predictive Control Formulation

This chapter is dedicated to the design and implementation of a continuous-time Model Predictive Con-

troller, which can follow in real-time the paths computed by the trajectory optimizer designed in the

previous chapter. The method implemented was based on the work presented in [36, 54], adapted to

the problem at hand and software used.

First, I define the dynamic equations that efficiently and accurately represent the FRIENDS’ project

UAV. The optimization function is then defined along with the constraints and bounds of the optimization

problem. The predictive control is finally implemented as explained in Section 2.3, where it is obtained

a sequence of inputs and state predictions by solving an optimization problem each sampling time for a

limited time horizon. The first input given by the sequence can then be applied to the simulated system.

After a certain time, the state of the UAV is re-sampled and the MPC is updated with a new initial

condition repeating the process.

5.1 System Dynamics

In order for the control optimization algorithm to be able to run in real-time the computation time at each

time step must be considerably smaller than the sampling time of the controller, since big delays between

state estimation and the application of the control commands would invalidate the MPC dynamic model,

which considers no computation delays in its implementation. This can be achieved by reducing the

number of state variables and simplifying the system dynamics of the robot.

In this project, I followed a cascaded approach studied in Blösch et al. [73] and assume that the

vehicle attitude is controlled by a low-level attitude Proportional controller that can track desired roll, φdes,

pitch, θdes, and yaw, ψdes angles [36]. To achieve accurate trajectory tracking, the high-level optimization

controller must consider the inner loop system dynamics. Therefore, it is necessary to consider a simple

model of the attitude closed-loop response. These dynamics can either be calculated by simplifying

the closed-loop dynamic equations (if the full controller implementation is known) or by a simple system

identification procedure in case of an unknown attitude controller used on commercial platforms such as

49

PX4 1 or Ardupilot 2.

In the case of this thesis and as stated in [36, 54], the attitude dynamics can be accurately repre-

sented by a first-order inner-loop approximation provided that the states and inputs of the system are

correctly bounded, in other words, this approximation would correctly represent the system if acrobatic

flights are performed. Therefore, for the mission performed in this project, this approximation provides

sufficient information to the MPC to take into account the low-level controller behaviour. The first-order

approximation was confirmed to be accurate after several system identification tests where simulated

UAV attitude data was compared to a first order system and the curve fit percentage was allays above

70%.

In order to simplify the full hexacopter dynamics presented in (3.9), I first decouple the rotational

dynamics from the translational dynamics.

Translational dynamic

In the simplified model, since the torques produced by the rotors are not individually considered in the

simplified rotational dynamics, I represent the UAV model solely in the Inertial frame and, instead of

using each rotor’s rate of rotation as inputs, I consider, as control variables, the reference commands for

the UAV’s roll, φcmd, and pitch, θcmd, on the inertial frame and the mass-normalized thrust T̃ .

T̃ =

∑6
i=1 Fi
m

where Fi is the thrust generated by the i-th motor and m is the mass of the Hexarotor.

After implementing this simplifications I can represent the new translational dynamics as follows:

ṗ = vI

v̇I = RBI(η)

0

0

T̃

+ Fa +

0

0

−g

+ Fext
(5.1)

where Fext = [Fxext, Fyext, Fzext] is the vector of external disturbances determined outside the op-

timization loop, Fa = T̃RBI(η)AdRIB(η)T vI is the term representing the aerodynamic effects from

equation (3.6) and RBI is the rotation matrix from the Body B frame to the Inertial frame I.

Simplified Rotational dynamic

As already mentioned, with respect to the rotational dynamics, the simplified model attitude is described

as a first order system that is considered independent for each of the Euler angles. This dynamics can

be represented as follows:

1https://px4.io
2https://ardupilot.org

50

η̇ =
1

τ
(Kηcmd − η) (5.2)

where η = [φ, θ, ψ] is the attitude vector of the UAV, ηcmd = [φcmd, θcmd, ψcmd] is the vector containing

attitude control references and τ = [τφ, τθ, τψ], K = [Kφ, Kθ, Kψ] are the vectors of time constants

and gains of the inner-loop first-order approximation behaviour respectively. The yaw reference for the

internal attitude controller is computed outside the MPC since yaw does not influence the translational

dynamics of the UAV. Therefore, inside the MPC the yaw dynamics is simply simulated by a first order

system in order to reduce the non-linear effect of a varying yaw trajectory.

5.2 Cascaded Control Strategy

As previously mentioned, the designed control strategy follows a cascade approach where the control

of the transitional and rotational dynamics is performed independently in different modules and with

different control methods. The main focus of this work is the control of the transitional dynamics, which

is performed using a Model Predictive Controller off-board the hexacopter’s autopilot. The attitude and

normalized thrust outputs of the translational controller are then used as set-points for the attitude PX4

controller running in-loop inside the Pixhawk.

The low-level attitude controller that controls the UAV model is part of the PX4 Firmware and is

based on unit quaternions. The formulation, implementation and testing of this non-linear PID controller

is described in paper [74]. The gains and weights of these controllers are adjusted until minimum

overshoot and reduced oscillatory behaviour is obtained from the UAV. After tuning all the internal control

loops of the PX4 autopilot, test flights are performed and the behaviour of the attitude loops is analysed.

With the help of system identification techniques like curve fitting, the gains and time constants of the

first-order approximation as well as the gains, natural frequency and damping factor of the second-order

approximation for the Rotational dynamics are determined and the system dynamics applied in the MPC

and the Trajectory optimizer are formulated.

For the sake of completeness, the architecture of internal attitude loops of the PX4 Firmware is

shown in figures 5.1 and 5.2.

Figure 5.1: PX4 Multicopter Attitude Controller taken from [60].

Since the angular rate controller loop runs at a frequency of 500Hz the time constant of the system

response is much lower than the control rate of the MPC. Therefore, it is correct to consider the tracking

51

Figure 5.2: PX4 Multicopter Angular Rate Controller taken from [60].

of attitude rate set-points almost instantaneous which further validates the first-order approximation for

the attitude controller.

Regarding the translational control, the MPC is formulated with the continuous dynamics presented

in (5.1) and (5.2), which can be represented as a non-linear state-space model of form Ẋ = f(X,U).

The state-space vector of the optimization control problem is:

X =
[
pT vTI ηT

]T
(5.3)

And the control input vector, U , consists of tree inputs,

U =
[
T̃ φcmd θcmd

]T
(5.4)

To solve this optimization problem, it is necessary to discretize the system dynamics with a sampling

time ∆t and to consider a time horizon Th, so that at each iteration, I obtain a sequence of N inputs U

and sequence of N + 1 state predictions X, with N = Th

∆t .

5.3 Attitude System Identification

As mentioned, when the knowledge about the attitude controller used onboard of the vehicle is limited or

not easily modelled mathematically, a loop identification process is recommended to find the parameters

of the previously described approximation.

To perform this system identification, typically a test flight is performed where the vehicle’s axes are

excited in free flight. During this flight, attitude references of the onboard control loop along with the

estimated vehicle attitude are logged with an accurate time stamp.

As mentioned in [54], typically two datasets are collected, one is used for parameters estimation

and the other is used for validation purposes. In this project the parameter identification is performed in

the MATLAB environment using the System Identification Toolbox [75]. A simulated flight is performed

in Gazebo where the drone is subject to aggressive step inputs in the position control loop of the PX4

autopilot. The flight log is fully saved by the PX4 Firmware as a .ulog file. This log file includes not only

the vehicle attitude estimated onboard by the EKF, which fuses data from the IMU and magnetometer to

52

estimate orientation but also the set-points of the attitude control loop, all correctly and consistently time

stamped. The .ulog file is then uploaded to MATLAB and the data is properly scaled and interpolated

before the system identification step is executed. The controller parameters will be finally calculated

along with a curve fitting percentage to confirm the validity of the identification procedure. The estimated

response should closely match the actual and, as a rule of thumb, if the given fit percentage isn’t at least

70% something has gone wrong or the system cannot be represented by the desired model.

5.4 External Disturbance Estimation

In this section, I discuss the external disturbance estimator employed to achieve offset-free trajectory

tracking. In the dynamic model (5.1) used in the Optimization Controller, I added independent external

forces that need to be computed outside the MPC optimization problem. The external disturbances Fext

are estimated by an Extended Kalman Filter (EKF) that employs the same translational model used

in the MPC (5.1), but with a second-order attitude dynamic approximation that was also used in the

trajectory optimization design, (4.1d), augmented with a vector of external Torques Mext also estimated

by the EKF.

A Kalman filter is an iterative mathematical process that uses a set of dynamic equations and con-

secutive data inputs to efficiently estimate the true value of all the states of the system being measured.

An extended Kalman filter extends this estimation ability to non-linear systems such as the one used.

Consider the non-linear dynamics:

Xk+1 = f(Xk, Uk) + wk (5.5)

Yk = h(Xk, Uk) + vk (5.6)

where wk and vk are the process or system and measurement noise respectively. They are white

Gaussian with zero mean and covariance matrix defined as

E[vkv
T
k] = Rk , E[wkw

T
k] = Qk . (5.7)

Now, let Y = {Y1, Y2, . . . , Yk} be a set of system observations. The filter’s goal is to obtain an

estimate of the system’s state based on these measurements.

To commence the Kalman filtering process, an initial state vector, X0, and a covariance matrix that

represents the error in the system or state estimates, P0, are declared. The vector X0 and matrix

P0 become the past state estimate, X̂(k−1|k−1) and past predicted error covariance matrix, P(k−1|k−1)

respectively [76].

The first step of each iteration is to linearise the system dynamics f(Xk, Xk) around the previous

estimate X̂(k−1|k−1). The partial derivates of functions f and h, with respect to the state vector, Xk, and

53

noise vectors vk and wk, are derived by computing the Jacobian denoted by:

Fk−1 =
∂f

∂X
|X̂(k−1|k−1)

, (5.8a)

Hk =
∂h

∂X
|X̂(k|k−1)

. (5.8b)

Then I predict the new state vector new error covariance matrix by applying the prediction step as

follows:

x̂(k|k−1) = f(X̂(k−1|k−1), Uk) (5.9)

P(k|k−1) = Fk−1P(k−1|k−1)F
T
k−1 +Qk (5.10)

Then I linearise the observation dynamics around X̂(k|k−1) as shown in (5.8b).

Next the Kalman gain, Kk, is computed. The Kalman gain weighs the error between predictions and

the measurements obtained from sensor readings. The Kalman gain is computed using the equation

below,

Kk = (P(k|k−1)Hk) (HkP(k|k−1)H
T
k +Rk)−1 (5.11)

The next step is to compute the estimated state vector and error covariance matrix. These variables

are computed using the following equations:

X̂(k|k) = X̂(k|k−1) +Kk[Yk −HkX̂(k|k−1)] (5.12)

P(k|k) = [I −KkHk]P(k|k−1) (5.13)

where Yk is the measurement obtained from the sensor(s), or in the specific case the states estimated

by the primary EKF of the PX4 autopilot.

The obtained estimates of the state vector and error covariance matrix become the past predicted

state vector, X̂(k−1|k−1) and past predicted error covariance matrix, P(k−1|k−1) for the next iteration of

the Kalman filter [76]. This estimation procedure is carried out for each time step.

In my case, the implemented External Kalman Filter used to estimate external Forces and Torques

is defined as follows:

Xk =
[
pT vTI ηT wTI FText MT

ext

]T
(5.14)

Uk =
[
T̃ φcmd θcmd ψcmd

]T
(5.15)

Yk =
[
pT vTI ηT

]T
(5.16)

54

And the non-linear dynamics and measurement model are expressed as:

f(Xk, Uk) =

vI

RBI(η)

0

0

T̃

+ Fa +

0

0

−g

+ Fext

wTI
−2ξωwTI + ω2(Kηcmd − η) +Mext

0

0

(5.17)

h(Xk, Uk) =

p

vI

η

 (5.18)

This estimator will reduce, not only, the effect of unpredictable external disturbances, like wind, but

also capture modelling error that the model may have in the attitude and drag approximations applied,

achieving zero steady-state tracking error Borrelli et al. [77], as well as reducing the MPC calculation

time by calculating externally forces like ground effect, that if considered in the dynamic model, would

make the state space significantly more complex.

5.5 Solver Implementation

The ACADO toolbox is an open-source and user-friendly algorithm collection that implements tools

for automatic control and dynamic optimization(fig. 5.3), such as model predictive control and state

and parameter estimation. It is implemented as a self-contained C/C++ library with an object-oriented

design that allows for easy coupling and extending of existing optimization packages and user-written

algorithms [78].

The optimization problem was implemented in a C++ interface for ACADO that can be easily compiled

and executed, solving the optimization problem and allowing for a quick preliminary validation test. To

formulate the problem in ACADO, a set of differential states, control inputs and online data variables must

be provided. The states, X, and control inputs, U , are the ones defined in (5.3) and (5.4) respectively

and represent the optimization variables. The online data are external parameters that can vary for each

iteration and discretization step. In this case, the online data are the attitude first-order approximation

constants (τ and K), the coefficients of the linear drag approximation (KD), the yaw reference of the

attitude loop (φcmd) and the estimated external Forces (Fext). The full control loop is illustrated in fig.

5.4.

After the definition of the model variables, the differential equations of the dynamic model represented

in (5.1) and (5.2) are added. Finally, the MPC parameters such as time horizon, sampling time, the

objective function and constraints are set.

55

Figure 5.3: ACADO Toolkit Architecture from [79].

The ACADO Toolkit also includes the option to export optimized, highly efficient C-code to solve the

non-linear model predictive control problem. The exported code is self-contained and can easily be

integrated with external autopilot software. Before generating code there are several options related to

discretization and integration algorithms that can be set based on the specifications of the problem to

reduce the approximation errors and improve the computation time.

Figure 5.4: Schematic representation of the MPC’s software Architecture.

In this implementation, a real-time iteration scheme based on Gauss-Newton is applied to approxi-

mate the non-linear optimization problem and iteratively improve the solution during the runtime. A Multi-

ple shooting technique is employed to discretize the dynamics of the optimization problem. In particular,

an implicit Range-Kutta integration scheme with a Gauss-Legendre integrator of order 4 is employed to

forward simulate the system dynamics and constraints over a coarse discrete-time grid t0, . . . , tN within

the time interval [ti, ti+1]. For each interval, a Boundary Value Problem (BVP) is solved, where additional

continuity constraints are imposed. At this point, the OCP can be expressed as a Non-linear Program

(NLP) that can be solved using Sequential Quadratic Programming (SQP) such as qpOASES solver.

Besides C code, ACADO also generates executable mexa64 files that can be used to test the algo-

rithm in a Simulink diagram. To do so, one must define for each iteration the state, input references, the

cost matrices Q, P and R, the bounds for the state and input constraints and online data for the next

56

N time steps. Then, I can solve the current NMPC problem by including the generated ACADO block

in Simulink. Afterward, the first input U0 can be applied to the simulated system dynamics of the Hexa-

copter, which can be implemented using the Aerospace Toolbox3, from which I obtain a newly updated

state that will be used in the next MPC iteration.

After validating the NMPC in Matlab the generated code can be integrated into a more complex

simulation environment such as Gazebo before it is ultimately used in a real-world model.

5.5.1 Optimization Function

The optimization problem solved by the MPC is based on the previously introduced formulation, (2.28),

where the goal is to minimize a Quadratic cost function composed of a sum of state and input path

costs for the N steps of the optimization horizon and a final boundary cost for the step N + 1 that, as

mentioned in section 2.3, is fundamental to the stability of the controller.

The weight matrices for states and inputs, Q and P , are tuned based on the analysis of the response

of the Hexarotor in multiple simulations performed with PX4 SITL software integrated on Gazebo. These

matrices can be time-varying by exponentially decaying throughout the prediction horizon or be constant

inside each optimization step.

In the precise trajectory tracking problem, the state and input references, Xref
t+i and Ureft+i , are calcu-

lated by the trajectory optimizer and represent the intended dynamics for the UAV, serving as a baseline

for the trajectories to be generated by the MPC. However, this controller can also be used to optimize

the path to reach a certain reference position or to hover above the current location. This is achieved by

setting the reference Xref
t+i constant for the all optimization horizon and equal to the desired position.

5.5.2 Constraints

The first set of constraints that must be respected by the optimization control problem are the system

dynamics represented by equations (5.1) and (5.2). In order to be applied to the non-linear problem,

these equations are discretized using one of the methods described in section 2.2 that convert the

continuous UAV dynamics into a set of discrete constraints for each discretization step.

For this simple control problem, the only extra constraints considered are bounds imposed on the

control inputs and dynamic states, in order to avoid saturation of the actuators and prevent the system

from showing unwanted behaviour.

T̃− ≤ T̃i ≤ T̃+ , (5.19a)

− φ+ ≤ φcmdi ≤ φ+ , (5.19b)

− θ+ ≤ θcmdi ≤ θ+ . (5.19c)

3https://www.mathworks.com/products/aerospace-toolbox.html

57

The limits imposed in some states to guarantee that the solution is feasible can be written as:

− V +
xy ≤ vxi ≤ V +

xy , (5.20a)

− V +
xy ≤ vyi ≤ V +

xy , (5.20b)

− V +
z ≤ vzi ≤ V +

z , (5.20c)

In the next chapter, we discuss the integration of this MPC in a physics simulation environment

(Gazebo) and show the results of several performance test that prove the robustness and stability of

this controller. The simulation environment allows for the testing and verification of this algorithm in a

simulated UAV model that closely resembles the real Hexacopter of the project FRIENDS.

58

Chapter 6

Simulation

In this chapter, I discuss a very important stage of the validation and verification of the previously de-

scribed optimization problems, in order to guarantee that both the results from optimized trajectory and

the MPC are feasible, safe and fulfil all the proposed objectives.

Initially, a custom 3D model of the Hexacopter used in the real world missions of the FRIENDS project

was designed and integrated into the Gazebo environment. The goal is not only to have a simulation

model similar to the real Hexacopter but also to create an environment where it is possible and practical

to simulate and test different sensors.

In order to simulate and control the Multirotor, there are two main options that are well documented

and easy to work with. The first option is RotorS [80], which simulates the UAV dynamics and sensors

with the help of Gazebo, performs state estimation and UAV control.

The second option is PX4 SITL (Software-In-The-Loop) simulations that perform the same functions

as RotorS but where the UAV control, state estimation and data communication are performed by mod-

ules that are part of the PX4 Autopilot. This Firmware is compatible with several versions of PixHawk

which is an independent open-hardware project providing readily-available, low-cost, and high-end, au-

topilot hardware designs to the academic, hobby and industrial communities [81]. Therefore, PX4 SITL

was found to be the best option to perform the simulation validation since the PixHawk was the cho-

sen platform to perform the low-level control of the real drone making the transition from the simulation

environment to the real model relatively simple.

Finally, the software developed in this research is meant to run off-board the PixHawk, in a NVidia

jetson nano, in a ROS (Robot Operating System) environment that communicates with the PX4 modules

through the MAVROS protocol1.

6.1 Gazebo Model

As mentioned, the first step of the simulation was importing the CAD (Computer-aided design) model of

the Hexacopter to Gazebo. Gazebo has its own format to describe robots, objects, and the environment,

1http://wiki.ros.org/mavros

59

called Simulation Description Format (SDF). In this file extension, the multi-body dynamics of the Robot

are defined as links, that can be fixed or rigid bodies, which are connected with joints. For my model

only fixed and revolute joints were used. The fixed joints are connecting two links rigidly, such that there

is no movement possible, and the revolute joints are hinge joints with mechanical limits that allow the

component to rotate, such as my rotors as represented in figure 6.1 [80]. Every link added to the SDF

file requires the definition of position, mass, inertia and, if desired, can be connected to a mesh file with

the .stl extension that contains the visual representation (CAD) of that link. The full UAV model can be

seen in fig. 6.2.

Figure 6.1: A draft of a multirotor helicopter with four non-symmetrical aligned rotors. Taken from [80].

Figure 6.2: Gazebo model of the Project FRIENDS’ Hexacopter.

For the FRIENDS Project, the UAV is comprised of two main components, the main frame and a

removable sensor box. In order to facilitate the assembly and testing of the different drone configurations

used in the three mission stages of this project, the sensor box is defined as a separate SDF model (see

fig. 6.3) that can be easily and independently modifiable when it comes to adding and removing sensors.

Finally, the SDF file also includes all the Gazebo plugins necessary to simulate the rotor’s physics

and the incorporated sensors. In my model, the dynamic proprieties of the rotors are simulated by plugin

libgazebo motor model2 that, if provided with the correct constants and coefficients of the real rotors,

can accurately simulate the real model behaviour.
2https://github.com/PX4/PX4-SITL gazebo/tree/master/include

60

Figure 6.3: Gazebo model of the Project FRIENDS’ Sensor Box.

The final SDF model also includes several simulated sensors like the IMU, Magnetometer, barom-

eter and GPS that interface directly with the PX4 modules to estimate the states and errors using the

autopilot’s internal Extended Kalman Filter.

All the other sensors, like the Intel Realsense D435 (see fig. 6.4) and the Velodyne VLP-16 lidar (see

fig. 6.5), require special plugins that can directly communicate with the ROS environment by publishing

the sensor simulated information as topics that can be easily subscribed by any control nodes.

Figure 6.4: Gazebo Model of a Realsense D435
Camera.

Figure 6.5: Gazebo Model of a VLP-16 Lidar.

6.2 Height map Model

One important step to fully test the implemented control algorithms is to simulate a realistic environment

that validates the terrain following the trajectory objective generated by the optimization problem. There-

fore, a DEM file was obtained from the United States Geologic Survey National Elevation Dataset3 and

imported as a gazebo world.

A Digital Elevation Model (DEM) is a 3D representation of a terrain’s surface that does not include

any objects like buildings or vegetation. DEMs are frequently created by using a combination of sensors,

such as LIDAR, radar, or cameras. The terrain elevations for ground positions are sampled at regularly-

spaced horizontal intervals and are then saved in a discrete matrix data format [82].

The term DEM is just a generic denomination, not a specific format. In fact, the DEMs can be repre-

sented as a grid of elevations (raster) or as a vector-based triangular irregular network (TIN). Currently,

Gazebo only supports raster data in the supported formats available in Geospatial Data Abstraction
3https://viewer.nationalmap.gov

61

Library(GDAL)[82]. The format chosen to represent the elevation data is .asc (ascii) because it can be

easily parsed without the need for any additional libraries.

Figure 6.6: Gazebo world with terrain elevation data as floor.

This DEM file will not only be imported to Gazebo but will also be loaded and used directly as the

terrain height data in the trajectory optimization algorithm described in chapter 4.

6.3 Software Architecture

6.3.1 PX4 Autopilot

PX4 is a Professional Autopilot developed by world-class developers from industry and academia and

supported by an active world wide community. It powers all kinds of vehicles from racing and cargo

drones through to ground vehicles and submersibles [83].

There are several options for flight control hardware that can be used to run the PX4 flight stack. As

previously mentioned, the autopilot hardware used on this project’s drone belongs to the Pixhawk series

that can run PX4 on NuttX OS.

Pixhawk is an independent open-hardware project providing readily-available, low-cost, and high-

end, autopilot hardware designs to the academic, hobby and industrial communities. This flight control

board has some embedded sensors to provide useful data to a Ground Control Station or off-board API:

a gyroscope, an accelerometer, a barometer and a magnetometer [81].

PX4 autopilot consists of two main layers: the flight stack which is an estimation and flight control

system, and the middleware which is a general robotics layer that can support any type of autonomous

robot, providing internal/external communications and hardware integration [60].

The communication to off-board APIs is performed employing the MAVLink protocol, which can be

used on a Serial link or UDP network connection. For internal communications, the system uses uORB

when the messages are not directly handled in the module. The uORB is the internal pub-sub messaging

system, used for communication between modules [60].

The PX4 autopilot that runs onboard the Pixhawk includes three independent control modules based

62

on a PID architecture that perform a basic level control for standard waypoint missions. For multicopters,

the control is performed by a cascade of PIDs as illustrated in the following figure.

Figure 6.7: PX4 Multicopter Control Architecture taken from [60].

As previously mentioned, PX4 also offers a few simulation options in several platforms like Gazebo,

jMAVSim and AirSim. For the Gazebo platform, it includes support not only for multirotors with several

motor configurations but also for planes, VTOLs, Rovers and UUVs. PX4 supports both Software In the

Loop (SITL) simulation, where the flight stack runs on a computer (either the same computer or another

computer on the same network) and Hardware In the Loop (HITL) simulation using a simulation firmware

on a real flight controller board.

Finally, some changes were performed to the default parameters of PX4 Firmware to fulfil the objec-

tives of this project. The first change was adding the FRIENDS Hexacopter model to de SITL model’s

directory and adding the configuration file for the model that includes the PID gains and Mixer type used

to control the multirotor.

The second change is related to the rate of messages published by the autopilot. Since the trans-

lational control is performed off-board it is necessary to increase the rate of the local position odometry

messages from 30Hz to 50Hz in order to improve the results of the MPC and guarantee a good and ef-

ficient estimation of external disturbances. The rate of some non-essential messages was also reduced

to prevent an overflow of the communication channel that could lead to the lost of messages.

6.3.2 Implemented Control Architecture

As already described, the Model Predictive Controller and trajectory optimizer run off-board in a ROS

Melodic environment that communicates with the PX4 autopilot via MAVROS.

The proposed architecture of control and navigation focused by this thesis is represented in image

6.8. Initially, the mission trajectory is generated in a horizontal path planning module wielding latitude

and longitude waypoints, that can adaptively change or be refined during the mission execution. The

trajectory is then optimized by the trajectory optimizer described in chapter 4 that outputs a minimum

time, terrain-following reference to be tracked by the position Modular Predictive Controller. In order to

convert the output of the trajectory optimizer to the input of the MPC a quadratic interpolation of the first

is obtained and sampled to the time step of the second.

63

The Optimization controller outputs attitude and normalized thrust references that are sent to the on-

board PX4 autopilot control loops. The low-level attitude control is then performed by PX4 that ultimately

converts the MPC references to rotor velocity commands.

Finally, the off-board controller receives the estimated states information from the autopilot and solves

the next iteration of the MPC closing the control loop.

Figure 6.8: Scheme of the Control architecture of this Thesis. First I optimize the trajectory creating a 3D
reference and then the MPC performs the high-level control by sending commands to the PX4 autopilot.

6.4 MPC Simulation Results

In order to properly tune the designed MPC, several simulation scenarios were tested and analysed,

where the MPC parameters such as sampling time and weights of the cost matrices were varied until

the desired behaviour was presented by the simulated UAV. The following tests were conducted using

the PX4 SITL simulation environment, explained in the next section, integrated with ROS Melodic and

Gazebo 9. This simulation setup is tested on the same Hp Laptop running Ubuntu 18.04 and equipped

with an Intel Core i7-9750H CPU @2.60GHz and 16,00GB of RAM.

In my setup, the optimization controller is running at 50 Hz while internally the prediction time step is

∆t = 0.1s, in this way I achieve a longer prediction horizon with less computational effort. By enforcing

the iteration to run roughly 5x faster than the discretization time, I obtain small deviations of the predicted

state vector between iterations which facilitates convergence. The prediction horizon is chosen to be

N = 20 steps resulting into Th = 2 seconds prediction horizon.

The MPC parameters used in the following simulations, presented in table 6.1, were determined by

applying the system identification method described in section 5.3 and are characteristic of the UAV

model and the attitude control loops and gains of the PX4 autopilot.

As for the cost matrices, I assigned weights to each component of the Least Quadratic objective

function (Table 6.2) so that the higher weighted states in the cost function are the most important in a

trajectory tracking control problem. Each cost matrix is defined as a diagonal matrix as demonstrated in

(6.1) and (6.2).

64

Table 6.1: FRIENDS hexacopter parameters and control input constraints.

Parameter Value

Kφ 0.995
Kθ 0.963
Kψ 0.990
τφ 0.1430 [s]

τθ 0.1650 [s]

τψ 0.4020 [s]

V +
xy 2.0 [m/s]

V +
z 3.0 [m/s]

T̃+ 4.0 [m/s2]

T̃− 15.0 [m/s2]

φ+ 30 [◦]

θ+ 30 [◦]

Table 6.2: MPC weight constants.

xq yq zq vqx vqy vqz ψq θq T̃ q ψqcmd θqcmd

90 90 120 80 80 90 10 10 1.5 55 55

Q = diag(xq, yq, zq, vqx, vqy, vqz, ψ
q, θq, 0) , P = diag(T̃ q, ψqcmd, θ

q
cmd) (6.1)

The final cost matrix does not include cost for the attitude states since the main goal of this optimiza-

tion is to perform control of the translational dynamics. Regarding the remaining weights, the final cost

matrix is scaled by 2 which means that the terminal cost is always 22 times more than the stage cost for

x.

R = diag(2xq, 2yq, 2zq, 2vqx, 2vqy, 2vqz, 0, 0, 0) (6.2)

The implemented weights penalize mainly the position and velocity errors that are fundamental for

accurate trajectory tracking. The input weights are considerably smaller and will allow the optimizer to

correct the most penalized errors by adjusting the attitude and mainly the thrust references calculated

by the trajectory optimizer.

6.4.1 Hovering Performance

An initial test was performed to validate the capabilities of the designed Model Predictive Controller to

maintain the UAV hovering in the proximity of a given reference. This first test is essential to guarantee

the stability of the MPC in a practical scenario where it is impossible to completely eliminate the state

error.

From the data in Figure 6.9 I can confirm that the implemented MPC is stable even when subject to

small disturbances and modelling errors since the position of the UAV stays close to the reference with

65

a maximum error of 8 cm in the horizontal plane and 9 cm in the vertical plane.

(a) Horizontal Position during Hover Mission. (b) Vertical Position during Hover Mission.

Figure 6.9: Graphical representation of the 3D performance of the MPC while hovering around a fix
position, applied to the simulated FRIENDS’ hexacopter.

Figure 6.10 shows the command outputs of the MPC during the Hover experiment. Although it is

possible to identify considerable oscillation in the following plots, it is important to state that the com-

manded angles only oscillate 2.0 deg around a reference point and therefore are unnoticeable and do

not represent visible oscillations in the simulated model.

Figure 6.10: Graphical representation of the MPC output commands during the hovering mission.

6.4.2 Step Reference

As a second test, I introduced a step in the MPC’s position reference to evaluate the performance of the

optimization controller when the reference is not a smooth function. In this case, no prior optimization

is performed meaning that the MPC optimizes the full path to reach the new position reference while

accounting for the constraints imposed in the control (Table 6.1).

In Figure 6.11 I can see the response of the MPC to a step-change in the reference of the y coordinate

while maintaining the references for the remaining states constant. These graphs show that in order to

66

reduce the error of the y position, caused by the step input, the UAV also deviated its x and z coordinates

from the reference. A likely explanation for this behaviour is related to the input saturation of the thrust

and pitch commands, demonstrated in Figure 6.12, resulting in an optimum trajectory different from the

expected straight line from the previous position to the new reference.

(a) Position X (b) Position Y (c) Position Z

Figure 6.11: Graphical representation of the 3D performance of the MPC when a step on the y position
reference is introduced.

Figure 6.12: Graphical representation of the MPC output commands when a step on the y position
reference is introduced.

6.4.3 Trajectory Tracking without Wind

Since the main goal of the designed Model Predictive Control is to precisely track previously computed

trajectories, I tested the performance of the MPC in my UAV model by using a smooth polynomial path

with aggressive turns and steep descents.

In Figure 6.13, I represent the reference smooth trajectory obtained from the polynomial optimization

described in Appendix A with user defined waypoints in order to have relatively sharp turns. The position

errors along the trajectory shown in Figure 6.14 confirm that the designed MPC can efficiently and

precisely track smooth trajectories. In the tested flight, I have a maximum error of around 15 cm for each

axis that occurs close to sharp corners.

The command oscillations present in the results from the simulation (Figure 6.15) do not translate to

oscillations in the translational states, i.e. the position and velocity are smooth functions of time along

the trajectory. However, those oscillations can be reduced by further improving the UAV model used

67

Figure 6.13: Graphical representation of the 3D trajectory executed without wind. In orange I represent
the reference polynomial trajectory to be tracked and in blue is the trajectory performed by the simulated
UAV.

(a) Error in x position. (b) Error in y position. (c) Error in z position.

Figure 6.14: Position tracking error of the MPC during the mission without wind.

in Gazebo, which appears to show some instability even when controlled by the PID loops of the PX4

autopilot and increasing the rate of control currently set to 50 Hz which will allow for a more precise and

stable control, reducing unwanted oscillations that can affect the sensors data acquisition.

Figure 6.15: Graphical representation of the MPC output commands during the polynomial tracking
mission without wind.

68

6.4.4 Trajectory Tracking with Wind

Finally, the previous trajectory was tracked once again but now with the presence of wind in order to

test the capability of the MPC coupled with the EKF to eliminate the effect of unpredictable external

disturbances. In order to perform this test, I used the wind plugin provided by the PX4 community

that employs a white Gaussian noise to simulate external wind with a mean velocity vW = 4[m/s] and

pointing on the positive direction of the y axis.

For this case, two tests were performed to demonstrate the advantages of using a EKF to estimate

external disturbances. In the first experiment present in figure 6.16, the EKF is active and estimates the

wind force which is approximately constant.

Figure 6.16: Graphical representation of the 3D trajectory executed with wind and with EKF. In orange
I represent the reference polynomial trajectory to be tracked and in blue is the trajectory performed by
the simulated UAV.

(a) Error in x position. (b) Error in y position. (c) Error in z position.

Figure 6.17: Position tracking error of the MPC during the mission with wind and EKF active.

In Figure 6.18 I can see that in order to eliminate the effects of the wind disturbance the commanded

pitch angle variates around 11 degrees and the thrust force increased to around 10.2 [m/s2]. The

position error along the tracked trajectory also only shows a slight increase when compared to the case

without any disturbances proving that the MPC coupled with an external disturbance estimator EKF

effectively eliminates the wind effects.

69

Figure 6.18: Graphical representation of the MPC output commands during the polynomial tracking
mission with wind and EKF active.

In the second experiment shown in figure 6.19, the EKF was turned off and the external forces

present in the MPC dynamic model were set to zero. From the position errors present in 6.20, it is visible

that the external wind force in the y direction causes a steady state position error of about 0.9 m. This

errors appears due to the inability that the MPC has to predict or understand this disturbance using only

the dynamic model of the UAV.

Figure 6.19: Graphical representation of the 3D trajectory executed with wind and without EKF. In orange
I represent the reference polynomial trajectory to be tracked and in blue is the trajectory performed by
the simulated UAV.

These results validate the importance of using an EKF to predict external disturbances. It not only to

reduces the effect of modelling errors and small uncounted drag forces but also efficiently estimates big

external disturbance allowing the MPC to achieve a null steady state error.

70

(a) Error in x position. (b) Error in y position. (c) Error in z position.

Figure 6.20: Position tracking error of the MPC during the mission with wind and EKF inactive.

Figure 6.21: Graphical representation of the MPC output commands during the polynomial tracking
mission with wind and EKF inactive.

6.5 Full Control Architecture Simulation

In this section, a final simulation is performed where the path optimized in the first scenario of section

4.6 is used as a reference for the MPC. This experiment will allow me to validate the full cascade

architecture presented in figure 6.8. The mission performed by the simulated UAV can be divided into 3

distinct stages. Initially, the UAV performs vertical take-off using only the PX4 autopilot controlling loops.

Then the second phase starts where the translational control is shifted from the autopilot to the off-

board MPC. In this phase, the UAV starts by adjusting the height to the desired altitude above the terrain.

After the terrain following trajectory is optimized the execution of the mission resumes.

Finally, after arriving at the last waypoint the UAV lands using once again the PX4 autopilot controller

and the mission terminates.

The full mission can be seen in figure 6.22 and the three phases are illustrated in figure 6.23 where

the altitude of the UAV is represented as a function of time. I can therefore conclude that the designed

tracking controller is also capable of efficiently and precisely track the trajectory optimized by the terrain

following algorithm which validates the final objective of coupling the controller and trajectory optimizer

is possible.

71

(a) 3D representation of the terrain-following mission. (b) Top-down view of the terrain-following mission.

Figure 6.22: Graphical representation of the 3D trajectory executed in the Terrain-Following Mission
where both the MPC and the trajectory optimizer are working in cascade. In orange I represent the
reference polynomial trajectory to be tracked and in blue is the trajectory performed by the simulated
UAV.

Figure 6.23: Graphical representation of the vertical trajectory executed in the Terrain-Following Mission
where both the MPC and the trajectory optimizer are working in cascade. The trajectory is divided in 3
separate stages. In green is represented the Takeoff segment of the mission, in yellow is represented
the terrain following stage and in red is represented de Landing phase.

72

Chapter 7

Conclusions

This thesis proposes a solution for terrain-following with an control trajectory optimization and the design

and validation of an online controller capable of following the optimized path even in the presence of

external disturbances. The first goal was achieved with an initial trajectory optimization that uses known

terrain data and pre-determine waypoints and the second objective was tackled by an online control

algorithm based on MPC.

Initially, I addressed the trajectory generation problem by designing a non-linear optimization prob-

lem that employed the UAV dynamics to determine an optimized control path that satisfies all mission

requirements. The multirotor dynamics were discretized using a direct transcription method that con-

verts continuous-time functions into a set of equality constraints. The trajectory optimization algorithm

was able to determine a 3D path that passes through a pre-determined set of horizontal waypoints while

keeping the vertical distance to the ground inside a safe and operational window. Another tackled goal

was to obtain a trajectory that finds a balance between the minimum time a minimum acceleration to

wield smooth trajectories that minimize the mission’s duration. All these objectives were incorporated

into the optimization problem by way of weighted cost functions and equality/inequality constraints for ev-

ery discretization time step. The algorithm was tested and validated using CasADi and the interior-point

solver IPOPT, where I concluded that the optimization was able to determine terrain-following trajectories

even in the presence of elevation discontinuities.

Secondly, I tackled the design and implementation of a controller capable of precisely track the

optimized path in the presence of unpredictable external disturbances. My approach is based on a Model

Predictive Control, where an iterative optimization problem generates control inputs in real-time. The

UAV dynamics implemented in the optimization problem were simplified based on a cascade approach

where the rotational dynamics are controlled by a separate autopilot that uses high rate PID feedback

loops. The MPC was developed in the C++ interface for ACADO, where I had to specify certain MPC

parameters, such as sampling time and time horizon, as well as an objective function and a set of

constraints. The goal of this control problem is to minimize the state error while fulfilling the multirotor

dynamic constraints. This algorithm was ultimately used in a ROS environment allowing for test and

validation of the controller in a SITL simulation where a model of the FRIENDS’ Hexarotor was integrated

73

on. This model was developed using CAD models and approximated inertial data and was incorporated

in the PX4 Simulation Firmware in order to use the same autopilot software as the real-life UAV.

Finally, both algorithms were coupled together by using the terrain-following optimized trajectory

as a state and input reference for the NMPC. This integration allowed me to conclude that the online

controller can reasonably track the optimum trajectory validating the initially planned cascade navigation

architecture.

7.1 Future Work

In terms of future work, several lines of research could be pursued.

The next logical step is completing the control and navigation pipeline in the real Hexacopter model

from Project FRIENDS. This will allow for further validation of the precise trajectory tracking capabilities

of the MPC when executing missions in a real outdoor environment.

Regarding the trajectory generation and optimization, better integration between the trajectory opti-

mizer and the MPC controller is still necessary. In other words, the trajectory optimization needs to be

integrated into the ROS framework so that it can run autonomously onboard the UAV. The presented al-

gorithm also requires further investigation in terms of efficiency and robustness in order to be ultimately

used in a real-world application. Another interesting approach could be an augmentation or reformu-

lation of the current trajectory optimization algorithm in order to include obstacle avoidance constraints

and real-time terrain data. This obstacle avoidance problem requires a sense and detection algorithm

capable of using data from several sensors to locate new obstacles in the mission environment and then

representing them as convex constraints in the trajectory optimization algorithm.

Another important area of improvement is the simulation of the FRIENDS UAV. In order to accurately

represent a real multirotor model in a simulation environment, further tests have to be carried out. It

is necessary to accurately measure all moments of inertia and determine the correct parameters that

describe the motors and propellers of the real model.

Finally, another requirement of project FRIENDS regarding vertical control and optimization is to

locate a safe place to land close to the desired location. This can be seen as another optimization

problem that is initially solved using the same Digital Elevation Data as the trajectory optimizer and then

once above the landing site further real-time re-optimization can be performed using sensor data.

74

Bibliography

[1] V. Prisacariu. The history and the evolution of uavs from the beginning till the 70s. In Journal of

Defense Resources Management, volume 8, page 181. Gale Academic OneFile, 2017.

[2] J. Keane and S. Carr. A brief history of early unmanned aircraft. Johns Hopkins Apl Technical

Digest, 32:558–571, 2013.

[3] S. Hayat, E. Yanmaz, and R. Muzaffar. Survey on unmanned aerial vehicle networks for civil

applications: A communications viewpoint. IEEE Communications Surveys Tutorials, 18(4):2624–

2661, 2016.

[4] C. Deng, S. Wang, Z. Huang, Z. Tan, and J. Liu. Unmanned aerial vehicles for power line inspection:

A cooperative way in platforms and communications. Journal of Communications, 9:687–692, 2014.

[5] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart. Receding horizon ”next-best-view”

planner for 3d exploration. In 2016 IEEE International Conference on Robotics and Automation

(ICRA), pages 1462–1468, 2016.

[6] M. Silvagni, A. Tonoli, E. Zenerino, and M. Chiaberge. Multipurpose uav for search and rescue

operations in mountain avalanche events. Geomatics, Natural Hazards and Risk, 8(1):18–33, 2017.

[7] H. T. Berie and I. Burud. Application of unmanned aerial vehicles in earth resources monitoring: fo-

cus on evaluating potentials for forest monitoring in ethiopia. European Journal of Remote Sensing,

51(1):326–335, 2018.

[8] R. K. Rangel and A. C. Terra. Development of a surveillance tool using uav’s. In 2018 IEEE

Aerospace Conference, pages 1–11, 2018.

[9] M. Nagai, T. Chen, R. Shibasaki, H. Kumagai, and A. Ahmed. Uav-borne 3-d mapping system by

multisensor integration. IEEE Transactions on Geoscience and Remote Sensing, 47(3):701–708,

2009.

[10] G. Rousseau, C. STOICA MANIU, S. Tebbani, N. Martin, and M. Babel. Minimum-time b-spline

trajectories with corridor constraints. application to cinematographic quadrotor flight plans. Control

Engineering Practice, 89:190–203, 2019.

[11] E. National Academies of Sciences and Medicine. Innovations in the Food System: Exploring the

Future of Food: Proceedings of a Workshop-in Brief. The National Academies Press, 2019.

75

[12] M. M. Marques, P. Dias, N. P. Santos, V. Lobo, R. Batista, D. Salgueiro, A. Aguiar, M. Costa,

J. E. da Silva, A. Ferreira, J. Sousa, M. de Fatima Nunes, E. Pereira, J. Morgado, R. Ribeiro,

J. Marques, A. Bernardino, M. Griné, and M. Taiana. Unmanned aircraft systems in maritime

operations: Challenges addressed in the scope of the seagull project. OCEANS 2015 - Genova,

pages 1–6, 2015.

[13] C. Cai, B. Carter, M. Srivastava, J. Tsung, J. Vahedi-Faridi, and C. Wiley. Designing a radia-

tion sensing uav system. In 2016 IEEE Systems and Information Engineering Design Symposium

(SIEDS), pages 165–169, 2016.

[14] K. Boudergui, F. Carrel, T. Domenech, N. Guenard, J. . Poli, A. Ravet, V. Schoepff, and R. Woo.

Development of a drone equipped with optimized sensors for nuclear and radiological risk char-

acterization. In 2011 2nd International Conference on Advancements in Nuclear Instrumentation,

Measurement Methods and their Applications, pages 1–9, 2011.

[15] Y. J. Brouwer. Radiological monitor for mobile robots operating in scenarios with nuclear threats.

Master’s thesis, Instituto Superior Tecnico, 2019.

[16] A. Kosari, H. Maghsoudi, and A. Lavaei. Path generation for flying robots in mountainous regions.

International Journal of Micro Air Vehicles, 9(1):44–60, 2017.

[17] P. Lu and B. Pierson. Optimal aircraft terrain-following analysis and trajectory generation. Journal

of Guidance, Control, and Dynamics, 18:555–560, 1995.

[18] P. Menon, V. Cheng, and E. Kim. Optimal trajectory synthesis for terrain-following flight. Journal of

Guidance Control and Dynamics, 14:807–813, 1991.

[19] Y. Feng, W. Chen, L. Yang, and D. Wei. Optimal terrain following trajectory regeneration using

linear gauss pseudo-spectral method. 2019 IEEE International Conference on Unmanned Systems

(ICUS), pages 205–211, 2019.

[20] I. Khademi, B. Maleki, and A. Nasseri Mood. Optimal three dimensional terrain following/terrain

avoidance for aircraft using direct transcription method. In 2011 19th Mediterranean Conference on

Control Automation (MED), pages 254–258, 2011.

[21] R. Zardashti, A. Nikkhah, and M. Yazdanpanah. Constrained optimal terrain following/threat avoid-

ance trajectory planning using network flow. Aeronautical Journal, 118:523–539, 2014.

[22] M. Rahim and S. Malaek. Aircraft terrain following flights based on fuzzy logic. Aircraft Engineering

and Aerospace Technology: An International Journal, 83:94–104, 2011.

[23] D. Lee and D. H. Shim. Spline-rrt* based optimal path planning of terrain following flights for fixed-

wing uavs. In 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence

(URAI), pages 257–261, 2014.

[24] S. Li, G. Liu, and J. Wu. A self-learning terrain-following method for aircrafts. 2017 36th Chinese

Control Conference (CCC), pages 3437–3442, 2017.

76

[25] H. Eslamiat, Y. Li, N. Wang, A. K. Sanyal, and Q. Qiu. Autonomous waypoint planning, optimal

trajectory generation and nonlinear tracking control for multi-rotor uavs. In 2019 18th European

Control Conference (ECC), pages 2695–2700, 2019.

[26] D. Falanga, P. Foehn, D. Scaramuzza, N. Kuppuswamy, and R. Tedrake. Fast trajectory optimization

for agile quadrotor maneuvers with a cable-suspended payload. 2017.

[27] P. Foehn and D. Scaramuzza. Cpc: Complementary progress constraints for time-optimal quadrotor

trajectories, 2020.

[28] C. Richter, A. Bry, and N. Roy. Polynomial Trajectory Planning for Aggressive Quadrotor Flight in

Dense Indoor Environments, pages 649–666. Springer International Publishing, 2016.

[29] B. Kada. Robust pid controller design for an uav flight control system. Newswood, 10 2011.

[30] P. Pounds, D. Bersak, and A. Dollar. Stability of small-scale uav helicopters and quadrotors with

added payload mass under pid control. Autonomous Robots, 33, 2012.

[31] L. Sun, R. Beard, and D. Pack. Trajectory-tracking control law design for unmanned aerial vehicles

with an autopilot in the loop. Proceedings of the American Control Conference, pages 1390–1395,

2014.

[32] S. Xingling, J. Liu, H. Cao, C. Shen, and W. Honglun. Robust dynamic surface trajectory track-

ing control for a quadrotor uav via extended state observer. International Journal of Robust and

Nonlinear Control, 28, 2018.

[33] G. Vasan, A. Singh, and K. Krishna. Model predictive control for micro aerial vehicle systems (mav)

systems. ArXiv, abs/1412.2356, 2014.

[34] C. Sferrazza, M. Muehlebach, and R. D’Andrea. Trajectory tracking and iterative learning on an

unmanned aerial vehicle using parametrized model predictive control. In 2017 IEEE 56th Annual

Conference on Decision and Control (CDC), pages 5186–5192, 2017.

[35] G. V. Raffo, M. G. Ortega, and F. R. Rubio. Mpc with nonlinear h-infiny control for path tracking of a

quad-rotor helicopter. IFAC Proceedings Volumes, 41(2):8564 – 8569, 2008.

[36] M. S. Kamel, M. Burri, and R. Siegwart. Linear vs nonlinear mpc for trajectory tracking applied to

rotary wing micro aerial vehicles. IFAC-PapersOnLine, 50, 2017.

[37] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, NY, USA, second edition,

2006.

[38] L. Grne and J. Pannek. Nonlinear Model Predictive Control: Theory and Algorithms. Springer

Publishing Company, Incorporated, 2013.

[39] J. McCall. Genetic algorithms for modelling and optimisation. Journal of Computational and Applied

Mathematics, 184(1):205 – 222, 2005.

77

[40] A. Jevtic, D. Andina, A. Jaimes, J. Gomez, and M. Jamshidi. Unmanned aerial vehicle route opti-

mization using ant system algorithm. pages 1 – 6, 2010.

[41] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 - International

Conference on Neural Networks, volume 4, pages 1942–1948, 1995.

[42] S. S. Rodrigues. Aero-thermal analysis and design of turbomachinery blades using multi-stage

adjoint methods. PhD thesis, Instituto Superior Tecnico, 2019.

[43] T. E. Abrudan, J. Eriksson, and V. Koivunen. Steepest descent algorithms for optimization under

unitary matrix constraint. IEEE Transactions on Signal Processing, 56, 2008.

[44] J. E. Dennis, Jr. and J. J. Moré. Quasi-newton methods, motivation and theory. SIAM Review, 19

(1):46–89, 1977.

[45] G. A. Gabriele and K. M. Ragsdell. The Generalized Reduced Gradient Method: A Reliable Tool

for Optimal Design. Journal of Engineering for Industry, 99(2):394–400, 1977.

[46] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone. Gusto: Guaranteed sequential trajectory opti-

mization via sequential convex programming. In 2019 International Conference on Robotics and

Automation (ICRA), pages 6741–6747, 2019.

[47] J. T. Betts. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control,

and Dynamics, pages 193–207, 1998.

[48] B. A.R. and J. Hedengren. Optimization Methods for Engineering Design. Brigham Young Univer-

sity, second edition, 2018.

[49] M. Kelly. An introduction to trajectory optimization: How to do your own direct collocation. SIAM

Review, 59:849–904, 2017.

[50] M. P. Kelly. Optimtraj. https://github.com/MatthewPeterKelly/OptimTraj/tree/master/docs/

AnalyticGradients/Figures. [Online; accessed 29-12-2020].

[51] B. Mehta and Y. Reddy. Chapter 19 - advanced process control systems. In Industrial Process

Automation Systems, pages 547 – 557. Butterworth-Heinemann, 2015.

[52] E. Kaiser, J. Kutz, and S. Brunton. Sparse identification of nonlinear dynamics for model predic-

tive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Science, 474, 2017.

[53] S. Skogestad. Model-based predictive control. http://folk.ntnu.

no/skoge/vgprosessregulering/lectures/part3_multivariable/MPC_Hovd_

Pages-from-kurskompendium.pdf. [Online; accessed 11-12-2020].

[54] M. S. Kamel, T. Stastny, K. Alexis, and R. Siegwart. Model Predictive Control for Trajectory Tracking

of Unmanned Aerial Vehicles Using Robot Operating System. 2017.

78

https://github.com/MatthewPeterKelly/OptimTraj/tree/master/docs/AnalyticGradients/Figures
https://github.com/MatthewPeterKelly/OptimTraj/tree/master/docs/AnalyticGradients/Figures
http://folk.ntnu.no/skoge/vgprosessregulering/lectures/part3_multivariable/MPC_Hovd_Pages-from-kurskompendium.pdf
http://folk.ntnu.no/skoge/vgprosessregulering/lectures/part3_multivariable/MPC_Hovd_Pages-from-kurskompendium.pdf
http://folk.ntnu.no/skoge/vgprosessregulering/lectures/part3_multivariable/MPC_Hovd_Pages-from-kurskompendium.pdf

[55] J. Rawlings, D. Mayne, and M. Diehl. Model Predictive Control: Theory, Computation, and Design.

Nob Hill Publishing, 2017.

[56] M. Kamel, K. Alexis, M. Achtelik, and R. Siegwart. Fast Nonlinear Model Predictive Control for

Multicopter Attitude Tracking on SO(3), 2015.

[57] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Planning and Control.

Springer Publishing Company, Incorporated, 1st edition, 2008.

[58] R. Mahony, V. Kumar, and P. Corke. Multirotor aerial vehicles: Modeling, estimation, and control of

quadrotor. IEEE Robotics Automation Magazine, 19(3):20–32, 2012.

[59] K. Alexis, G. Nikolakopoulos, and A. Tzes. Model predictive quadrotor control: attitude, altitude and

position experimental studies. IET Control Theory Applications, 6(12), 2012.

[60] PX4. Px4 user guide. https://docs.px4.io/master/en/. [Online; accessed 10-12-2020].

[61] J.-M. Kai, G. Allibert, M.-D. Hua, and T. Hamel. Nonlinear feedback control of quadrotors exploiting

first-order drag effects. IFAC-PapersOnLine, 50:8189 – 8195, 2017.

[62] S. Omari, M. Hua, G. Ducard, and T. Hamel. Nonlinear control of vtol uavs incorporating flapping

dynamics. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

2419–2425, 2013.

[63] J. Andersson, J. Akesson, and M. Diehl. Casadi: A symbolic package for automatic differentiation

and optimal control. volume 87, 2012.

[64] APMonitor. Second order systems. https://apmonitor.com/pdc/index.php/Main/

SecondOrderSystems. [Online; accessed 30-12-2020].

[65] T. Sharma, P. Williams, C. Bil, and A. Eberhard. Optimal three dimensional aircraft terrain following

and collision avoidance. Anziam Journal, 47:695–711, 2007.

[66] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian, R. Siegwart, and J. Buchli. Fast

nonlinear model predictive control for unified trajectory optimization and tracking. In 2016 IEEE

International Conference on Robotics and Automation (ICRA), pages 1398–1404, 2016.

[67] T. A. Howell, B. E. Jackson, and Z. Manchester. Altro: A fast solver for constrained trajectory opti-

mization. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 7674–7679, 2019.

[68] P. Sopasakis, E. Fresk, and P. Patrinos. Open: Code generation for embedded nonconvex opti-

mization. IFAC World Congress 2020, Berlin, 2020.

[69] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale constrained

optimization. SIAM Rev., 47:99–131, 2005.

79

https://docs.px4.io/master/en/
https://apmonitor.com/pdc/index.php/Main/SecondOrderSystems
https://apmonitor.com/pdc/index.php/Main/SecondOrderSystems

[70] R. H. Byrd, J. Nocedal, and R. A. Waltz. Knitro: An Integrated Package for Nonlinear Optimization,

pages 35–59. Springer US, 2006.

[71] CasADi. CasADi’s documentation. https://web.casadi.org/docs/#using-lookup-tables. [On-

line; accessed 09-12-2020].

[72] M. Posa and R. Tedrake. Direct Trajectory Optimization of Rigid Body Dynamical Systems through

Contact, pages 527–542. Springer Berlin Heidelberg, 2013.

[73] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart. Vision based mav navigation in unknown

and unstructured environments. In 2010 IEEE International Conference on Robotics and Automa-

tion, pages 21–28, 2010.

[74] D. Brescianini, M. Hehn, and R. D’Andrea. Nonlinear quadrocopter attitude control. Technical re-

port, Eidgenössische Technische Hochschule Zürich, Departement Maschinenbau und Verfahren-

stechnik, 2013.

[75] MathWorks. System Identification Toolbox: User’s Guide (R2020b). https://www.mathworks.com/

help/pdf_doc/ident/ident_ug.pdf, 2020. [Online; accessed 09-12-2020].

[76] M. Ribeiro and I. Ribeiro. Kalman and extended kalman filters: Concept, derivation and properties,

2004.

[77] F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear and Hybrid Systems. Cam-

bridge University Press, 2017.

[78] B. Houska, J. Ferreau, and M. Diehl. Acado toolkit-an open source framework for automatic control

and dynamic optimization. Optimal Control Applications and Methods, 32:298 – 312, 2011.

[79] ACADO. The acado code generation tool. https://acado.github.io/cgt_overview.html. [On-

line; accessed 29-12-2020].

[80] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart. RotorS - A Modular Gazebo MAV Simulator

Framework, volume 625, pages 595–625. 2016.

[81] Pixhawk. Pixhawk series. https://docs.px4.io/master/en/flight_controller/pixhawk_

series.html. [Online; accessed 10-12-2020].

[82] Gazebo. Digital elevation models. http://gazebosim.org/tutorials/?tut=dem. [Online; ac-

cessed 10-12-2020].

[83] L. Meier, D. Honegger, and M. Pollefeys. Px4: A node-based multithreaded open source robotics

framework for deeply embedded platforms. In 2015 IEEE International Conference on Robotics

and Automation (ICRA), pages 6235–6240, 2015.

[84] M. Burri, H. Oleynikova, , M. W. Achtelik, and R. Siegwart. Real-time visual-inertial mapping,

re-localization and planning onboard mavs in unknown environments. In Intelligent Robots and

Systems (IROS 2015), 2015 IEEE/RSJ International Conference on, 2015.

80

https://web.casadi.org/docs/#using-lookup-tables
https://www.mathworks.com/help/pdf_doc/ident/ident_ug.pdf
https://www.mathworks.com/help/pdf_doc/ident/ident_ug.pdf
https://acado.github.io/cgt_overview.html
https://docs.px4.io/master/en/flight_controller/pixhawk_series.html
https://docs.px4.io/master/en/flight_controller/pixhawk_series.html
http://gazebosim.org/tutorials/?tut=dem

[85] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for quadrotors. In 2011

IEEE International Conference on Robotics and Automation, pages 2520–2525, 2011.

[86] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E. Galceran. Continuous-time trajectory

optimization for online uav replanning. In 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2016.

81

82

Appendix A

Polynomial Trajectory Planning

In this chapter, we will present another planning method that was also implemented in order to solve

the waypoint tracking and minimum time problem. This method is based on the works in [28, 84], in

which the trajectory planning problem for a generic multicopter is implemented as the optimization of

polynomial coefficients with a pre-defined degree, resulting in smooth and continuous trajectories.

Since the main goal of this optimization formulation is efficiency and integration with the ROS en-

vironment and PX4 autopilot, the following non-linear optimization problem was formulated and solved

with the open-source tool nlopt that interfaces directly with C++.

A.1 Problem Formulation

The approximation of a UAV trajectory by a piecewise polynomial in space is based on the differential

flatness property of its dynamics. In other words, the states and the inputs of the multirotor dynamics can

be analytically mapped from a 3D path and its derivatives. This powerful property effectively guarantees

the feasibility of any smooth trajectory, provided that its derivatives are reasonably bounded to avoid

input saturation, thus eliminating the need for iterative simulation in the search for trajectories. The

Differential flatness of the general multirotor model was demonstrated by Mellinger and Kumar [85].

Minimum-snap polynomials have proven very effective as multirotor trajectories since the motor com-

mands and attitude accelerations of the vehicle are proportional to the snap, or forth derivative, of the

path [85]. Minimizing the snap of a trajectory quantifies a notion of ”smoothness” that is desirable for

maintaining the quality of onboard sensor measurements as well as avoiding paths that would require

abrupt or excessive control inputs [28].

For multicopters, a single trajectory segment between two points in state space is composed of

independent polynomial trajectories for the flat output variables x, y, z and yaw angle. Each polynomial

segment of order N with N + 1 coefficients at time t can be expressed as:

P (t) =

N∑
n=0

pnt
n (A.1)

83

Considering now the problem of navigating through M waypoints at specified times. We define the

overall trajectory as piecewise polynomial functions of the form (A.1) over M time intervals such that:

p(t) =

P1(t), t0 ≤ t < t1 ,

P2(t), t1 ≤ t < t2 ,

...

PM (t), tM−1 ≤ t < tM .

(A.2)

This optimization problem can be easily formulated as a constraint QP where we optimize the co-

efficients pn and connect the polynomials Pn by setting continuity constraints. However, this method

presents several limitations related to numerical issues. Since the trajectories depend directly on the

term tn, the problem becomes unsolvable when using polynomials of high degrees and for trajectories

extended for long periods of time, as it exceeds the precision of the computer. Therefore, the optimiza-

tion problem presented in paper [28], is based on an unconstrained QP reformulation of the constraint

problem, which is robust to numerical instability.

A.2 Objective function

The objective function consists on the integral of the derivatives of p(t), where each polynomial is valid

from t = 0 to the segment duration t = Ts,i, i = 1, . . . , M . In case of multiple dimensions, each segment

M consists of D polynomials, such that the cost over the whole trajectory is:

Jpol =

M∑
i=1

D∑
d=1

∫ Ts,i

0

N∑
j=0

µj

∥∥∥∥djPi,d(t)dtj

∥∥∥∥ (A.3)

The cost Ji,d for a polynomial in a segment i in dimension d with its derivatives weighted by µj can

be written as:

Ji,d = cTi,d ·Hi · ci,d (A.4)

In this expression, ci,d is a vector of the N coefficients of a single polynomial. In our system, we

generate trajectories that minimize the integral of the square of the snap. In order to minimize snap,

all derivative penalties in the cost function except for µ4 would be set to zero. The construction of the

Hessian matrix Hi follows from the differentiation of the square of the polynomial with respect to each

of its coefficients [28]. Since the cost of a given polynomial is a function of its duration Ts,i, we must fix

all T prior to optimization.

A.3 Constraints

The designed optimization problem is subject to equality constraints in terms of derivatives at the start

and end of each segment.

84

The equality constraints imposed for each polynomial allow the endpoints to be pinned to known

locations in space, or assign specific values of velocity, acceleration, jerk or snap[28]. Such constraints

are useful to enforce, for example, that the multirotor start from rest at the beginning of a trajectory. The

equality constraints of the polynomial optimization problem can be formulated as:

Aici,d = di,d , Ai =

 A(t = 0)

A(t = Ts,i)

i

, di,d =

 di,d(t = 0)

di,d(t = Ts,i)

i

(A.5)

Where Ai is a mapping matrix between coefficients, ci,d, and a vector containing the derivative

values for the beginning and end of the i-th segment in a polynomial trajectory di,d.

Note that both the Hessian matrix Hi and mapping matrix Ai only depend on the segment time Ts,i

and thus are constant overall dimensions for the segment, which allows for computation-time savings in

the case of multiple dimensions [84].

Continuity constraints must be imposed to ensure the trajectories are continuous in between inter-

vals. To do so, we must enforce continuity of the position and yaw angle, as well as of their first four and

two derivatives respectively, by imposing equality between the end of the i-th segment derivatives and

he beginning of the (i+1)-th segment [28]:

Ai(t = Ts,i)ci,d = Ai+1(t = 0)ci+1,d (A.6)

di,d, Hi and Ai can now compiled into a single set of linear equality constraints for the joint optimiza-

tion problem over the whole trajectory:

A1 0

. . .

0 AM

c1,d

...

cM,d

 =

d1,d

...

dM,d

 (A.7)

A.4 Unconstrained QP Reformulation

For solving this problem, we refer to Richter et al. [28] that showed how to convert the problem into an

unconstrained QP, and its superior numerical stability compared to a constrained QP, which becomes

ill-conditioned for more than several segments, polynomials of a high order, and when widely varying

segment times are involved.

In their method, the QP is solved directly for endpoint derivatives as decision variables, rather than

solving for polynomial coefficients. Once the optimal waypoint derivatives are found, the minimum-order

polynomial connecting each pair of waypoints can be obtained by inverting the appropriate constraint

matrix.

By merging equations (A.3), (A.4) and (A.7), we obtain a new formulation for the cost function of each

polynomial trajectory:

85

Jpol =

d1,d

...

dM,d

T

A1 0

. . .

0 AM

−T

H1 0
. . .

0 HM

A1 0

. . .

0 AM

−1

d1,d

...

dM,d

 (A.8)

In order to compute the inverse of each mapping matrix Ai, this implantation uses the matrix ma-

nipulation described in [84] that exploits the structure of the mapping matrix to allow the use of the

Schur-Complement.

Then the new optimization variables di,d are re-order such that fixed derivatives and the free deriva-

tives are separately grouped. As shown in paper Richter et al. [28], after re-ordering the endpoint

derivatives the cost function (A.8) can be written as a sum of individual cost representing both sets of

optimization variables. This optimization function can be differentiated and equated to zero resulting in

an expression for the optimal endpoint free derivatives as a function of the fixed derivatives and the cost

matrix. This means that the optimum solution for this problem can be obtained algebraically without the

need for any iterative optimization process.

The polynomials can then be recovered from individual evaluations of the appropriate constraint

equations mapping derivatives back into the space of coefficients.

A.5 Time Optimization

The proposed unconstrained QP problem requires the use of fix time intervals Ts,i for each polynomial

since these times are needed to determine the cost matrix (A.8). However, one of the trajectory op-

timization goals is to minimize the segment times between each waypoint while respecting maximum

velocity and acceleration constraints. For this end, we follow the formulation proposed in [28, 84] where

an iterative non-linear optimum problem is solved to determine the desired polynomial paths.

In this formulation, the segment times Ts,i are added as optimization variables and a reformulation

of the cost function will now perform a trade-off between minimizing snap and total trajectory time. The

objective function of the new optimization problem is as follows:

J = Jpol + kT

(M∑
i=1

Ts,i

)2

(A.9)

where kT is a user-specified constant that weights the mentioned trade-off. The total set of optimiza-

tion variables consists now of the free end-point derivatives from the unconstrained reformulation and

the segment times Ts,1, . . . , Ts,M .

A.6 State Inequality Constraints

After defining the optimization function (A.9) it is necessary to incorporate state limitations for the newly

formulated non-linear problem.

86

In order to constraint the derivates inside each polynomial segment we require the definition of in-

equality constraints in parameters that do not belong to the set of optimization variables of the problem.

The method presented in [84], tackles the problem of state limitations as guidelines instead of hard con-

straints. Therefore, they implemented those constraints as soft constraints by adding an additional cost

term, that heavily penalizes states outside the boundary limits imposed:

Jsoft constraint = exp(
xmax,actual − xmax

xmaxε
ks) (A.10)

where xmax,actual is the maximum of the norm of state x in the given 3D trajectory, ε defines how

much the deviation from the state maximum is tolerated and ks is a constant that allows to set how

much the violation of a constraint is weighted. The norm of the velocity can be written in terms of the

polynomials of position as:

vnorm(t) =
√

(ṗ(t)x)2 + (ṗ(t)y)2 + (ṗ(t)z)2 (A.11)

To find the candidates for the state maximum, we need to compute the derivative with respect to time

and equal it to zero. As shown in [84] the real roots can be calculated with the numerically stable Jenkins-

Traub algorithm allowing vmax,actual to be determined. The same methodology of derivative constraints

can be applied for higher-order derivatives allowing for the optimization of the desired trajectory.

A.7 Limitations and Results

The presented formulation was only explored to solve the waypoint following and minimum time objective

of this paper. The terrain-following goal was accounted for by adding extra waypoints every dmax meters

in the straight line between the initial waypoints and setting the z coordinate of each point to be the

desired altitude above ground. The trajectory is then sampled and if the altitude of any point is above or

below certain limits an extra waypoint is added and that specific segment is re-optimized. This method

is common in many commercial applications.

The following test was conducted on the same HP Laptop running Ubuntu 18.04 and equipped with

an Intel Core i7-9750H CPU @2.60GHz and 16,00GB of RAM. These results illustrate a simple waypoint

constrained trajectory with minimum time and snap objectives where four polynomials are optimized to

wield a trajectory fully defined in x, y, z and yaw. The maximum limits for the path derivatives are

represented in Figure A.1 and the final trajectory polynomials are shown in Figure A.2.

The utilized method does not properly include the altitude above the terrain as an optimization vari-

able since it restricts the nodes’ z coordinate to a specific value before the optimization is performed.

However, the presented polynomial optimization can be further augmented in the problem formulation

with new sets of inequality constraints or soft constraints to include the objective of terrain avoidance.

Some examples of those augmentations are described by Mellinger and Kumar [85] where corridor

constraints are added to some trajectory segments by sampling the polynomial for a specific time interval

and then constraining those sampling points to be inside the desired tunnel. However, this formulation

87

Polynomial Limits

hmin 4.0 [m]
hmax 6.0 [m]
dmax 2.0 [m]
vmax 1.0 [m/s]
amax 2.0 [m/s2]

ψ̇max
π
4 [rad/s]

ψ̈max
π
2 [rad/s2]

Figure A.1: 3D polynomial trajectory and optimization limits.

(a) Top-down view of the trajectory. (b) Yaw polynomial.

(c) Altitude polynomial.

Figure A.2: Optimized Polynomial trajectory.

is not very efficient due to the non-convexity inequality constraints of the sampling points. Another

formulation presented by Oleynikova et al. [86] considers a grid-like three-dimensional space where

each cell can either be occupied or not. In this paper, the path is sampled based on the resolution of the

88

grid and an extra smooth collision cost is added to the optimization function to prevents the polynomial

trajectory to be inside an occupied cell.

However, the characteristics of the terrain surface and the difficulty to represent it as sets of con-

straints or cost terms for the polynomial segments of the trajectory coupled with the inability to directly

constraint UAV states and inputs such as pitch, roll or thrust makes this formulation, although consider-

ably faster, not adequate for the problem of this dissertation.

89

90

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 State of the Art
	1.3.1 Trajectory Generation
	1.3.2 UAV Control

	1.4 Thesis Contributions
	1.5 Thesis Outline

	2 Theoretical Overview
	2.1 Optimization Overview
	2.2 Trajectory Optimization
	2.3 Model Predictive Controller
	2.3.1 Stability

	3 Hexarotor Dynamics and Kinematics
	3.1 Reference systems for the hexacopter
	3.2 Applied forces and torques

	4 Trajectory Generation Formulation
	4.1 System Dynamics
	4.2 Waypoint Objective
	4.3 Terrain Following and Terrain Avoidance Objective
	4.4 Time-Optimal Objective
	4.5 Terrain Modelling
	4.6 Solver Implementation
	4.6.1 Problem Discretization
	4.6.2 Optimization Function
	4.6.3 Constraints
	4.6.4 Experimental Results with Validation Data

	5 Model Predictive Control Formulation
	5.1 System Dynamics
	5.2 Cascaded Control Strategy
	5.3 Attitude System Identification
	5.4 External Disturbance Estimation
	5.5 Solver Implementation
	5.5.1 Optimization Function
	5.5.2 Constraints

	6 Simulation
	6.1 Gazebo Model
	6.2 Height map Model
	6.3 Software Architecture
	6.3.1 PX4 Autopilot
	6.3.2 Implemented Control Architecture

	6.4 MPC Simulation Results
	6.4.1 Hovering Performance
	6.4.2 Step Reference
	6.4.3 Trajectory Tracking without Wind
	6.4.4 Trajectory Tracking with Wind

	6.5 Full Control Architecture Simulation

	7 Conclusions
	7.1 Future Work

	Bibliography
	A Polynomial Trajectory Planning
	A.1 Problem Formulation
	A.2 Objective function
	A.3 Constraints
	A.4 Unconstrained QP Reformulation
	A.5 Time Optimization
	A.6 State Inequality Constraints
	A.7 Limitations and Results

